skip to main content

Title: DAHe white dwarfs from the DESI Survey
ABSTRACT

A new class of white dwarfs, dubbed DAHe, that present Zeeman-split Balmer lines in emission has recently emerged. However, the physical origin of these emission lines remains unclear. We present here a sample of 21 newly identified DAHe systems and determine magnetic field strengths and (for a subset) periods that span the ranges of ≃6.5–147 MG and ≃0.4–36 h, respectively. All but four of these systems were identified from the Dark Energy Spectroscopic Instrument survey sample of more than 47 000 white dwarf candidates observed during its first year of observations. We present detailed analysis of the new DAHe WD J161634.36+541011.51 with a spin period of 95.3 min, which exhibits an anticorrelation between broad-band flux and Balmer line strength that is typically observed for this class of systems. All DAHe systems cluster closely on the Gaia Hertzsprung–Russell diagram where they represent ≃1 per cent of white dwarfs within that region. This grouping further solidifies their unexplained emergence at relatively late cooling times and we discuss this in context of current formation theories. Nine of the new DAHe systems are identifiable from Sloan Digital Sky Survey spectra of white dwarfs that had been previously classified as featureless DC-type systems. We suggest high-S/N (signal-to-noise ratios), unbiased observations of more » DCs as a possible route for discovering additional DAHe systems.

« less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10404975
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
521
Issue:
4
Page Range or eLocation-ID:
p. 4976-4994
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We obtained ultraviolet and optical spectra for nine M dwarfs across a range of rotation periods to determine whether they showed stochastic intrinsic variability distinguishable from flares. The ultraviolet spectra were observed during the Far Ultraviolet M-dwarf Evolution Survey Hubble Space Telescope program using the Space Telescope Imaging Spectrograph. The optical observations were taken from the Apache Point Observatory 3.5 m telescope using the Dual Imaging Spectrograph and from the Gemini South Observatory using the Gemini Multi-Object Spectrograph. We used the optical spectra to measure multiple chromospheric lines: the Balmer series from Hαto H10 and the CaiiH and K lines. We find that after excising flares, these lines vary on the order of 1%–20% at minute-cadence over the course of an hour. The absolute amplitude of variability was greater for the faster rotating M dwarfs in our sample. Among the five stars for which we measured the weaker Balmer lines, we note a tentative trend that the fractional amplitude of the variability increases for higher-order Balmer lines. We measured the integrated flux of multiple ultraviolet emission features formed in the transition region: the Nv, Siiv,and Civresonance line doublets, and the Ciiand Heiimultiplets. The signal-to-noise ratio of the UV datamore »was too low for us to detect nonflare variability at the same scale and time cadence as the optical. We consider multiple mechanisms for the observed stochastic variability and propose both observational and theoretical avenues of investigation to determine the physical causes of intrinsic variability in the chromospheres of M dwarfs.

    « less
  2. ABSTRACT

    Theoretical predictions of the population of Galactic symbiotic stars (SySts) are highly inconsistent with the current known population. Despite intense effort over the past decades, observations are still far below the predictions. The majority of known SySts so far are identified based on selection criteria established in the optical regime. The recent discovery of SU Lyn with very faint optical emission lines uncloaked a subgroup of SySts with accreting-only white dwarfs. In this particular case, the luminous red giant may overshadow the dimmed white dwarf companion. A new approach to search for this subgroup of SySts is presented, employing GALEX UV and 2MASS/AllWISE IR photometry. The FUV-NUV colour index is an indicator, direct or indirect, for the presence of hot compact companions. The cross-match of the Catalogue of Variable Stars III obtained from the All-Sky Automated Survey for SuperNovae (ASAS-SN) with the GALEX, 2MASS, and AllWISE catalogues result in a sample of 814 potential SySt candidates. From them, 105 sources have photometric measurements from both FUV and NUV bands and 35 exhibit FUV-NUV<1, similar to what it is expected from known SySts. Five known SySts are recovered, while two new genuine SySts are discovered in spectroscopic follow-up observations after themore »detection of the typical emission lines.

    « less
  3. ABSTRACT

    We report the discovery of two apparently isolated stellar remnants that exhibit rotationally modulated magnetic Balmer emission, adding to the emerging DAHe class of white dwarf stars. While the previously discovered members of this class show Zeeman-split triplet emission features corresponding to single magnetic field strengths, these two new objects exhibit significant fluctuations in their apparent magnetic field strengths with variability phase. The Zeeman-split hydrogen emission lines in LP 705−64 broaden from 9.4 to 22.2 MG over an apparent spin period of 72.629 min. Similarly, WD J143019.29−562358.33 varies from 5.8  to 8.9 MG over its apparent 86.394 min rotation period. This brings the DAHe class of white dwarfs to at least five objects, all with effective temperatures within 500 K of 8000 K and masses ranging from $0.65\,\,{\text{to}}\,\,0.83\, {\rm M}_{\odot }$.

  4. Abstract

    We present the results from our ongoing spectroscopic survey targeting low-mass white dwarf binaries, focusing on the southern sky. We used a Gaia DR2- and eDR3-based selection and identified 28 new binaries, including 19 new extremely low-mass (ELM) white dwarfs, one short period, likely eclipsing, DABZ, and two potential LISA binaries. We present the orbital and atmospheric parameters for each new binary based on our spectroscopic follow up. Four of our new binaries show periodic photometric variability in TESS 2 minutes cadence data, including one new eclipsing double-lined spectroscopic binary. Three others show periodic photometric variability in ZTF, including one new eclipsing binary. We provide estimates for the inclinations and scaled component radii for these ZTF variables, based on light-curve modeling of our high-speed photometric follow-up observations. Our observations have increased the sample of ELM Survey binaries identified in the southern sky to 41, an increase of 64%. Future time domain surveys, such as BlackGEM and the Vera C. Rubin Observatory Legacy Survey of Space and Time, will efficiently identify photometric variables in the southern sky and significantly increase the population of southern sky low-mass white dwarf binaries, leading to a more complete all-sky population of these systems.

  5. Abstract

    M dwarfs are favorable targets for exoplanet detection with current instrumentation, but stellar companions can induce false positives and inhibit planet characterization. Knowledge of stellar companions is also critical to our understanding of how binary stars form and evolve. We have therefore conducted a survey of stellar companions around nearby M dwarfs, and here we present our new discoveries. Using the Differential Speckle Survey Instrument at the 4.3 m Lowell Discovery Telescope, and the similar NN-EXPLORE Exoplanet Stellar Speckle Imager at the 3.5 m WIYN telescope, we carried out a volume-limited survey of M-dwarf multiplicity to 15 parsecs, with a special emphasis on including the later M dwarfs that were overlooked in previous surveys. Additional brighter targets at larger distances were included for a total sample size of 1070 M dwarfs. Observations of these 1070 targets revealed 26 new companions; 22 of these systems were previously thought to be single. If all new discoveries are confirmed, then the number of known multiples in the sample will increase by 7.6%. Using our observed properties, as well as the parallaxes and 2MASSKmagnitudes for these objects, we calculate the projected separation, and estimate the mass ratio and component spectral types, for thesemore »systems. We report the discovery of a new M-dwarf companion to the white dwarf Wolf 672 A, which hosts a known M-dwarf companion as well, making the system trinary. We also examine the possibility that the new companion to 2MASS J13092185-2330350 is a brown dwarf. Finally, we discuss initial insights from the POKEMON survey.

    « less