skip to main content


Title: Examining how social networks influence women and under-represented minority students’ pursuit of engineering in university: when, who, and how?
Abstract Background

Women and under-represented minority (URM) students continue to be under-represented in STEM and earn the lowest proportion of undergraduate engineering degrees. We employed a mixed methods research approach grounded in social capital theory to investigatewhenthey first consider pursuing engineering as a college degree major,whoinfluences this decision, andhowthe influence occurs. First, we surveyed 2186 first-year undergraduate students entering engineering programs at 11 universities in the U.S. during the fall of 2014. Next, we interviewed a subsample of 55 women and URM students.

Results

Survey findings indicated that women were more likely than men to consider pursuing engineering while in high school, before admission into college, or while in college rather than considering it earlier in their education. Black and Latinx students were more likely than white students to consider pursuing engineering after high school. In addition, Black and Latinx students were more likely than white students to identify a school counselor (rather than a family member) as having the most influence on their engineering academic and career decisions. In interviews, women and URM students provided examples of influential people who connected their aptitude and enthusiasm for mathematics, science, and problem-solving to engineering, explained the benefits of being an engineer, and provided advice about engineering academic and career pathways.

Conclusions

Encouraging earlier consideration of engineering majors, such as during middle school, could allow women and URM students time to take requisite courses and take advantage of college preparatory programming. Likewise, universities can engage in intentional efforts to identify women and URM students with engineering interests and provide guidance. Such efforts should also include connecting them with other women and URM students in engineering. In addition, universities should support K-12 and university personnel in offering advice that can influence students’ decision to declare an engineering major, which could help recruit more women and URM students into engineering.

 
more » « less
NSF-PAR ID:
10404979
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
10
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The low numbers of women and underrepresented minorities in engineering has often been characterized as a ‘pipeline problem,’ wherein few members of these groups choose engineering majors or ‘leak out’ of the engineering education pipeline before graduating [1]. Within this view, the difficulty of diversifying the engineering workforce can be addressed by stocking the pipeline with more diverse applicants. However, the assumption that adding more underrepresented applicants will solve the complex and persistent issues of diversity and inclusion within engineering has been challenged by recent research. Studies of engineering culture highlight how the persistence of women and minorities is linked to norms and assumptions of engineering cultures (e.g., [2], [3]). For example, some engineering cultures have been characterized as masculine, leading women to feel that they must become ‘one of the guys’ to fit in and be successful (e.g., [4]). In the U.S., engineering cultures are also predominantly white, which can make people of color feel unwelcome or isolated [5]. When individuals feel unwelcome in engineering cultures, they are likely to leave. Thus, engineering culture plays an important role in shaping who participates and successfully persists in engineering education and practice. Likewise, disciplinary cultures in engineering education also carry assumptions about what resources students should possess and utilize throughout their professional development. For example, educational cultures may assume students possess certain forms of ‘academic capital,’ such as rigorous training in STEM subjects prior to college. They might also assume students possess ‘navigational capital,’ or the ability to locate and access resources in the university system. However, these cultural assumptions have implications for the diversity and inclusivity of educational environments, as they shape what kinds of students are likely to succeed. For instance, first generation college (FGC) students may not possess the same navigational capital as continuing generation students [5]. Under-represented minority (URM) students often receive less pre-college training in STEM than their white counterparts [6]. However, FGC and URM students possess many forms of capital that often are unrecognized by education systems, for example, linguistic capital, or the ability to speak in multiple languages and styles) [7], [8]. Educational cultures that assume everyone possesses the same kinds of capital (i.e. that of white, American, high SES, and continuing generation students) construct barriers for students from diverse backgrounds. Thus, we propose that examining culture is essential for understanding the underlying assumptions and beliefs that give rise to the challenging issues surrounding the lack of diversity and inclusion in engineering. This case study examines the culture of a biomedical engineering (BME) program at a large Midwestern university and identifies underlying assumptions regarding what sources of cultural and social capital undergraduate students need to be successful. By tracing when and how students draw upon these forms of capital during their professional development, we examine the implications for students from diverse backgrounds, particularly FGC and URM students. 
    more » « less
  2. In 1991, the Texas A&M University System was one of the first six Louis Stokes Alliance for Minority Participation (LSAMP) awardees. In the three decades of programming, several high impact practices (HIP) have been emphasized. One of them, undergraduate research (UR), is discussed. All members of the Alliance are part of the Texas A&M University System and undergraduate research was supported through a variety of initiatives on the Alliance campuses. Data presented chronicle student perspectives. Topics addressed are the impact of involvement in undergraduate research on academic outcomes, interest in further engagement with research, interest in graduate school, and career goals as well as the patterns of research engagement participants experienced and the forms of learning that resulted. These materials are presented regarding an audience that was overwhelmingly underrepresented minority students all of whom were pursuing science, technology, engineering, or mathematics (STEM) degrees. Students reported UR influenced their academic outcomes, further engagement with research, interest in graduate school, and career goals while facilitating learning and skill development. These findings, for URM students from institutions with three different Carnegie classifications that are a predominantly white institution, two Hispanic-serving institutions (HSIs), and a historically Black college or university (HBCU), parallel outcomes reported in the literature for investigations focused on general student populations suggesting that UR benefits are generalizable regardless of institution type and ethnicity/race of the participant. Findings also suggest that these patterns apply regardless of the student’s year in school. Material presented details the research elements commonly included in TAMUS LSAMP UR experiences and in which areas students reported the most learning. Thus, this document touches on topics important in addressing development of an adequate, well-trained, and diverse STEM workforce. It also confirms the efficacy of a highly replicable approach to facilitating a HIP, undergraduate research, with students from underrepresented groups. 
    more » « less
  3. null (Ed.)
    Research Experience for Teachers (RET) programs are National Science Foundation (NSF) funded programs designed to provide K- 12 Science, Technology, Engineering, and Mathematics (STEM) teachers with immersive, hands-on research experiences at Universities around the country. The NSF RET in nanotechnology encourages teachers to translate cutting-edge research into culturally relevant Project-Based Learning (PjBL) and engineering curriculum. Traditionally, the evaluation of RET programs focuses on the growth and development of teacher self-efficacy, engineering content knowledge gains, or classroom implementation of developed curriculum materials. However, reported methods for evaluating the impact of RETs on their female, minority student populations' high school graduation and undergraduate STEM major rates are limited. This study's objective was to compare RET high school student graduation rates and undergraduate STEM major rates across gender, race, and ethnicity to a comparison sample to determine the RET program's long-term impact on students' likelihood of pursuing STEM careers. The approach of collecting and analyzing the Texas Education Research Center Database (EdRC) data is a novel methodology for assessing RET programs' effectiveness on students. The EdRC is a repository of K-12 student data from the Texas Education Agency (TEA) and Higher Education data from the Texas Higher Education Coordinating Board (THECB). This joint database contains demographic, course registration, graduation, standardized testing, and college major, among others, for all students that attended a K-12 public school in Texas and any college in Texas, public or private. The RET program participants at Rice University (2010 – 2018) taught numerous students, a sample size of 11,240 students. A propensity score matching generated the student comparison group within the database. Students' school campus, gender, race/ethnic status, and English proficiency status were applied to produce a graduation comparison sample size of 11,240 students of Non-RET participants. Linking the TEA database to the THECB database resulted in college STEM participants and comparison sample sizes of 4,029 students. The project team conducted a logistic regression using RET status to predict high school graduation rates as a whole and by individual variables: gender, Asian American, Black, Caucasian, and Latinx students. All models were significant at p less than 0.05, with models in favor of students RET teachers. The project team conducted a logistic regression using RET status to predict student STEM undergraduate major rates as a whole and by individual variables: Gender, Asian American, Black, Caucasian, and Latinx students. African American and Caucasian models were significant at p less than 0.05; Gender, Asian American, and Latinx models were marginally significant (0.05 less than p greater than 0.1), where RET students had higher STEM major rates than matched controls. The findings demonstrate that RET programs have a long-term positive impact on the students' high school graduation rates and undergraduate STEM major rates. As teachers who participate in the RET programs are more likely to conduct courses using PjBL strategies and incorporate real-world engineering practices, female and minority students are more likely to benefit from these practices and seek careers utilizing these skills. 
    more » « less
  4. Background:

    The United States continues to invest considerable resources into developing the next generation of science, technology, engineering, and mathematics (STEM) talent. Efforts to shore up interest in pursuing STEM careers span decades and have increasingly focused on boosting interest among diverse student populations. Policymakers have called for engaging students in a greater STEM ecology of support that extends beyond the traditional classroom environment to increase student STEM career interest. Yet, few robust studies exist exploring the efficacy of many programmatic efforts and initiatives outside the regular curriculum intended to foster STEM interest. To maximize STEM education investments, promote wise policies, and help achieve the aim of creating STEM learning ecosystems that benefit diverse student populations and meet the nation’s STEM goals, it is crucial to examine the effectiveness of these kinds of STEM education initiatives in promoting STEM career aspirations.

    Purpose:

    The purpose of this quasi-experimental study was to examine the impact of one popular, yet understudied, STEM education initiative on students’ STEM career aspirations: participation in a university- or college-run STEM club or program activity (CPA) during high school. Specifically, we studied whether participation in a college-run STEM CPA at a postsecondary institution during high school was related to college-going students’ STEM career aspirations, and we examined whether that relationship differed depending on student characteristics and prior STEM interests.

    Research Design:

    We conducted a quasi-experimental investigation to explore the impact of participation in university- or college-run STEM CPAs on college-going students’ STEM career aspirations. We administered a retrospective cohort survey to students at 27 colleges and universities nationwide resulting in a sample of 15,847 respondents. An inverse probability of treatment weighted logistic regression model with a robust set of controls was computed to estimate the odds of expressing STEM career aspirations among those who participated in college-run STEM CPAs compared with the odds expressed among students who did not participate. Our weighting accounted for self-selection effects.

    Results:

    Quasi-experimental modeling results indicated that participation in university- or college-run STEM CPAs had a significant impact on the odds that college-going students would express STEM career aspirations relative to students who did not participate. The odds of expressing interest in a STEM career among participants in STEM CPAs were 1.49 times those of the control group. Robustness checks confirmed our results. The result held true for students whether or not they expressed interest in STEM careers prior to participation in STEM CPAs, and it held true across a diverse range of student characteristics (e.g., race, parental education, gender, standardized test scores, and family/school encouragement).

    Conclusions:

    Results suggest that university- and college-run STEM CPAs play an important role in the STEM education ecology, serving the national goal of expanding the pool of college-going students who aspire to STEM careers. Moreover, results showed that participation in university- and college-run STEM CPAs during high school is equally effective across diverse student characteristics. Policymakers, educators, and those charged with making investment decisions in STEM education should seriously consider university- and college-run STEM CPAs as a promising vehicle to promote diverse students’ STEM career aspirations in the broader STEM learning ecosystem and as an important complement to other STEM learning environments.

     
    more » « less
  5. Despite increasing demands for skilled workers within the technological domain, there is still a deficit in the number of graduates in computing fields (computer science, information technology, and computer engineering). Understanding the factors that contribute to students’ motivation and persistence is critical to helping educators, administrators, and industry professionals better focus efforts to improve academic outcomes and job placement. This article examines how experiences contribute to a student’s computing identity, which we define by their interest, recognition, sense of belonging, and competence/performance beliefs. In particular, we consider groups underrepresented in these disciplines, women and minoritized racial/ethnic groups (Black/African American and Hispanic/Latinx). To delve into these relationships, a survey of more than 1,600 students in computing fields was conducted at three metropolitan public universities in Florida. Regression was used to elucidate which experiences predict computing identity and how social identification (i.e., as female, Black/African American, and/or Hispanic/Latinx) may interact with these experiences. Our results suggest that several types of experiences positively predict a student’s computing identity, such as mentoring others, having a job, or having friends in computing. Moreover, certain experiences have a different effect on computing identity for female and Hispanic/Latinx students. More specifically, receiving academic advice from teaching assistants was more positive for female students, receiving advice from industry professionals was more negative for Hispanic/Latinx students, and receiving help on classwork from students in their class was more positive for Hispanic/Latinx students. Other experiences, while having the same effect on computing identity across students, were experienced at significantly different rates by females, Black/African American students, and Hispanic/Latinx students. The findings highlight experiential ways in which computing programs can foster computing identity development, particularly for underrepresented and marginalized groups in computing. 
    more » « less