skip to main content


Title: Source–sink dynamics within a complex life history
Abstract

Source–sink patch dynamics occur when movement from sources stabilizes sinks by compensating for low local vital rates. The mechanisms underlying source–sink dynamics may be complicated in species that undergo transitions between discrete life stages, particularly when stages have overlapping habitat requirements and similar movement abilities. In these species, for example, the demographic effects of movement by one stage may augment or offset the effects of movement by another stage. We used a stream salamander system to investigate patch dynamics within this form of complex life history. Specifically, we tested the hypothesis that the salamanderGyrinophilus porphyriticusexperiences source–sink dynamics in riffles and pools, the dominant geomorphic patch types in headwater streams. We estimated stage‐specific survival probabilities in riffles and pools and stage‐specific movement probabilities between the two patch types using 8 years of capture–recapture data on 4491 individuals, including premetamorphic larvae and postmetamorphic adults. We then incorporated survival and movement probabilities into a stage‐structured, two‐patch model to determine the demographic interactions between riffles and pools. Monthly survival probabilities of both stages were higher in pools than in riffles. Larvae were more likely to move from riffles to pools, but adults were more likely to move from pools to riffles, despite experiencing much lower survival in riffles. In simulations, eliminating interpatch movements by both stages indicated that riffles are sinks that rely on immigration from pools for stability. Allowing only larvae to move stabilized both patch types, but allowing only adults to move destabilized pools due to the demographic cost of adult emigration. These results indicated that larval movement not only stabilizes riffles, but also offsets the destabilizing effects of maladaptive adult movement. Similar patch dynamics may emerge in any structured population in which movement and local vital rates differ by age, size, or stage. Addressing these forms of internal demographic structure in patch dynamics analyses will help to refine and advance general understanding of spatial ecology.

 
more » « less
Award ID(s):
1637685
NSF-PAR ID:
10405009
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
104
Issue:
4
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Changes in the amount, intensity, and timing of precipitation are increasing hydrologic variability in many regions, but we have little understanding of how these changes are affecting freshwater species. Stream-breeding amphibians—a diverse group in North America—may be particularly sensitive to hydrologic variability during aquatic larval and metamorphic stages. Here, we tested the prediction that hydrologic variability in streams decreases survival through metamorphosis in the salamander Gyrinophilus porphyriticus , reducing recruitment to the adult stage. Using a 20-y dataset from Merrill Brook, a stream in northern New Hampshire, we show that abundance of G. porphyriticus adults has declined by ∼50% since 1999, but there has been no trend in larval abundance. We then tested whether hydrologic variability during summers influences survival through metamorphosis, using capture–mark–recapture data from Merrill Brook (1999 to 2004) and from 4 streams in the Hubbard Brook Experimental Forest (2012 to 2014), also in New Hampshire. At both sites, survival through metamorphosis declined with increasing variability of stream discharge. These results suggest that hydrologic variability reduces the demographic resilience and adaptive capacity of G. porphyriticus populations by decreasing recruitment of breeding adults. They also provide insight on how increasing hydrologic variability is affecting freshwater species, and on the broader effects of environmental variability on species with vulnerable metamorphic stages. 
    more » « less
  2. Abstract

    Interactions among members of biological communities can create spatial patterns that effectively generate habitat heterogeneity for other members in the community, and this heterogeneity might be crucial for their persistence. For example, stage‐dependent vulnerability of a predatory lady beetle to aggression of the ant,Azteca instabilis,creates two habitat types that are utilized differently by the immature and adult life stages of the beetle. Due to a mutualistic association betweenA. instabilisand the hemipteranCoccus viridis –which isA. orbigeramain prey in the area – only plants around ant nests have highC. viridispopulations. Here, we report on a series of surveys at three different scales aimed at detecting how the presence and clustered distribution of ant nests affect the distribution of the different life stages of this predatory lady beetle in a coffee farm in Chiapas, Mexico. Both beetle adults and larvae were more abundant in areas with ant nests, but adults were restricted to the peripheries of highest ant activity and outside the reach of coffee bushes containing the highest densities of lady beetle larvae. The abundance of adult beetles located around trees with ants increased with the size of the ant nest clusters but the relationship is not significant for larvae. Thus, we suggest thatA. orbigeraundergoes an ontogenetic niche shift, not through shifting prey species, but through stage‐specific vulnerability differences against a competitor that renders areas of abundant prey populations inaccessible for adults but not for larvae. Together with evidence presented elsewhere, this study shows how an important predator is not only dependent on the existence of two qualitatively distinct habitat types, but also on the spatial distribution of these habitats. We suggest that this dependency arises due to the different responses that the predator's life stages have to this emergent spatial pattern.

     
    more » « less
  3. Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths. This life stage often is overlooked in surveys but can be used to relatively rapidly document diversity, especially for the many species that are rare or live cryptically as adults. Using DNA barcode data from samples of nemertean worms collected in three biogeographical regions—Northeastern Pacific, the Caribbean Sea and Eastern Tropical Pacific—we found that most species were collected as either benthic adults or planktonic larvae but seldom in both stages. Randomization tests show that this deficit of operational taxonomic units collected as both adults and larvae is extremely unlikely if larvae and adults were drawn from the same pool of species. This effect persists even in well-studied faunas. These results suggest that sampling planktonic larvae offers access to a different subset of species and thus significantly increases estimates of biodiversity compared to sampling adults alone. Spanish abstract is available in the electronic supplementary material. 
    more » « less
  4. Abstract

    Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long‐term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco‐evolutionary processes. We used 8 years of capture–recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage‐specific survival probabilities in the salamanderGyrinophilus porphyriticus. The life cycle ofG. porphyriticusincludes an aquatic larval stage followed by metamorphosis into a semi‐aquatic adult stage. In our study populations, the larval stage lasts 6–10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi‐locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre‐metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection.

     
    more » « less
  5. ABSTRACT Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved cellular stress response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNA interference (RNAi) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to −5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages. 
    more » « less