Rising global food demand necessitates improved crop yields. Biostimulants offer a potential solution to meet these demands. Among them, antioxidants have shown potential to improve yield, nutritional quality, and resilience to climate change. However, large-scale production of many antioxidants is challenging. Here, we investigate Coenzyme M (CoM), a small, achiral antioxidant from archaea, as a potential biostimulant, investigating its effects on growth and physiology. CoM significantly increased shoot mass and root length of the model plant, Arabidopsis thaliana, in a concentration-dependent manner. Sulfur-containing CoM supplementation restored growth under sulfur-limited conditions in Arabidopsis, whereas similar recovery was not observed for other macronutrient deficiencies, consistent with it being metabolized. In tobacco, CoM increased photosynthetic light capture capacity, consistent with observed growth improvements. Interestingly, this effect was independent of carbon capture rates. Furthermore, CoM promoted early-stage shoot growth in various crops species, including tobacco, basil, cannabis, and soybean. Our results suggest CoM is a promising, scalable biostimulant with potential to modify photosynthesis and enhance crop productivity.
more »
« less
The effects of exogenously applied antioxidants on plant growth and resilience
Abstract Plant growth and resilience require balancing an inherently oxidative metabolism with powerful antioxidant systems that help maintain homeostasis. When the environment changes, reactive oxygen species are potent indicators of that change, allowing adaptation through re-balancing metabolism and antioxidant systems. A large body of evidence supports the use of exogenously applied antioxidants to improve both plant growth and their resilience to stress. Notably, some phenotypic effects are similar upon the application of chemically diverse antioxidants, while others are distinct. In this review, we analyze research from antioxidant treatment experiments and highlight the similarities in their practical applications and their effects on plant stress tolerance, photosynthesis, native antioxidant systems, and phytohormones. We also briefly cover the specific effects of individually applied antioxidants and what is known about their potential modes of action. Given the strong potential of antioxidant applications, we discuss research needed to promote their agricultural use. Finally, we identify outstanding questions about how the exogenous application of antioxidants mechanistically affects plant growth.
more »
« less
- PAR ID:
- 10405043
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Phytochemistry Reviews
- Volume:
- 22
- Issue:
- 2
- ISSN:
- 1568-7767
- Page Range / eLocation ID:
- p. 407-447
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin’s effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools—transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer’s, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.more » « less
-
Abstract Coastal systems are immensely valuable to humans. They contain unique ecosystems that are biodiversity reservoirs and provide key ecosystem services as well as a wealth of cultural heritage. Despite their importance to humans, many coastal systems are experiencing degradation that threatens their integrity and provisioning of services. While much is known about the plant communities and associated wildlife in coastal areas, the importance of microorganisms represents a large knowledge gap. Here we review the ecology of plant-microbial symbioses in coastal systems, including mycorrhizae, nitrogen fixers, endophytes, rhizosphere microbes, and pathogens. We focus on four common coastal communities: sand dunes, marshes, mangroves, and forests/shrublands. We also assess recent research and the potential for using microbes in coastal restoration efforts to mitigate anthropogenic impacts. We find that microbial symbionts are largely responsible for the health of plants constituting the foundation of coastal communities by affecting plant establishment, growth, competitive ability, and stress tolerance, as well as modulating biogeochemical cycling in these stressful coastal systems. Current use of microbial symbionts to augment restoration of stressful and degraded coastal systems is still very much in its infancy; however, it holds great promise for increasing restoration success on the coast. Much research is still needed to test and develop microbial inocula for facilitating restoration of different coastal systems. This is an excellent opportunity for collaboration between restoration practitioners and microbial ecologists to work toward a common goal of enhancing resilience of our coastal ecosystems at a time when these systems are vulnerable to an increasing number of threats.more » « less
-
Abstract Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.more » « less
-
In nature, individual cells are compartmentalized by a membrane that protects the cellular elements from the surrounding environment while simultaneously equipped with an antioxidant defense system to alleviate the oxidative stress resulting from light, oxygen, moisture, and temperature. However, this mechanism has not been realized in cellular mimics to effectively encapsulate and retain highly reactive antioxidants. Here, we report cell-inspired hydrogel microcapsules with an interstitial oil layer prepared by utilizing triple emulsion drops as templates to achieve enhanced retention of antioxidants. We employ ionic gelation for the hydrogel shell to prevent exposure of the encapsulated antioxidants to free radicals typically generated during photopolymerization. The interstitial oil layer in the microcapsule serves as an stimulus-responsive diffusion barrier, enabling efficient encapsulation and retention of antioxidants by providing an adequate pH microenvironment until osmotic pressure is applied to release the cargo on-demand. Moreover, addition of a lipophilic reducing agent in the oil layer induces a complementary reaction with the antioxidant, similar to the nonenzymatic antioxidant defense system in cells, leading to enhanced retention of the antioxidant activity. Furthermore, we show the complete recovery and even further enhancement in antioxidant activity by lowering the storage temperature, which decreases the oxidation rate while retaining the complementary reaction with the lipophilic reducing agent. KEYWORDS: droplet microfluidics, cell-inspired microcapsule, encapsulationmore » « less
An official website of the United States government
