skip to main content

This content will become publicly available on March 1, 2024

Title: Stable Carbon Dots from Microwave-Heated Carbon Nanoparticles Generating Organic Radicals for In Situ Additions
Carbon dots (CDots) are small carbon nanoparticles with effective surface passivation by organic functionalization. In the reported work, the surface functionalization of preexisting small carbon nanoparticles with N-ethylcarbazole (NEC) was achieved by the NEC radical addition. Due to the major difference in microwave absorption between the carbon nanoparticles and organic species such as NEC, the nanoparticles could be selectively heated via microwave irradiation to enable the hydrogen abstraction in NEC to generate NEC radicals, followed by in situ additions of the radicals to the nanoparticles. The resulting NEC-CDots were characterized by microscopy and spectroscopy techniques including quantitative proton and 13C NMR methods. The optical spectroscopic properties of the dot sample were found to be largely the same as those of CDots from other organic functionalization schemes. The high structural stability of NEC-CDots benefiting from the radical addition functionalization is highlighted and discussed.
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1855905 2102056 2102021
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon dots (CDots) are generally defined as small-carbon nanoparticles with surface organic functionalization and their classical synthesis is literally the functionalization of preexisting carbon nanoparticles. Other than these “classically defined CDots”, however, the majority of the dot samples reported in the literature were prepared by thermal carbonization of organic precursors in mostly “one-pot” processing. In this work, thermal processing of the selected precursors intended for carbonization was performed with conditions of 200 °C for 3 h, 330 °C for 6 h, and heating by microwave irradiation, yielding samples denoted as CS200, CS330, and CSMT, respectively. These samples are structurally different from the classical CDots and should be considered as “nano-carbon/organic hybrids”. Their optical spectroscopic properties were found comparable to those of the classical CDots, but very different in the related photoinduced antibacterial activities. Mechanistic origins of the divergence were explored, with the results suggesting major factors associated with the structural and morphological characteristics of the hybrids.
  2. Carbon dots (CDots) are defined as surface-passivated small carbon nanoparticles, with the effective passivation generally achieved by organic functionalization. Photoexcited CDots are both potent electron donors and acceptors, and their characteristic bright and colorful fluorescence emissions make them excellent fluorescence sensors for organic analytes and metal ions. For the latter extraordinarily low detection limits based on extremely efficient quenching of fluorescence intensities by the targeted metal cations have been observed and reported in the literature. However, all of the dot samples in those reported studies were made from “one-pot” carbonization of organic precursors mostly under rather mild processing conditions, unlikely to be sufficient for the required level of carbonization. Those dot samples should therefore be more appropriately considered as “nano-carbon/organic hybrids”, characterized structurally as being highly porous and spongy, which must be playing a dominating role in the reported sensing results. In this study, we compared the dot samples from carbonization syntheses under similarly mild and also more aggressive processing conditions with the classically defined and structured CDots for the fluorescence sensing of copper( ii ) cations in aqueous solutions. The observed dramatic decoupling between quenching results for fluorescence intensities and lifetimes of the carbonization samples, with the former beingmore »extraordinary and the latter within the diffusion controlled limit, suggested that the quenching of fluorescence intensities was greatly affected by the higher local quencher concentrations than the bulk associated with the porous and spongy sample structures, especially for the sample from carbonization under too mild processing conditions. The major differences between the classical CDots and the nano-carbon/organic hybrids are highlighted, and the tradeoffs between sensitivity and accuracy or reproducibility in the use of the latter for fluorescence sensing are discussed.« less
  3. The recalcitrance of some emerging organic contaminants through conventional water treatment systems may necessitate advanced technologies that use highly reactive, non-specific hydroxyl radicals. Here, polyacrylonitrile (PAN) nanofibers with embedded titanium dioxide (TiO 2 ) nanoparticles were synthesized via electrospinning and subsequently carbonized to produce mechanically stable carbon/TiO 2 (C/TiO 2 ) nanofiber composite filters. Nanofiber composites were optimized for reactivity in flow through treatment systems by varying their mass loading of TiO 2 , adding phthalic acid (PTA) as a dispersing agent for nanoparticles in electrospinning sol gels, comparing different types of commercially available TiO 2 nanoparticles (Aeroxide® P25 and 5 nm anatase nanoparticles) and through functionalization with gold (Au/TiO 2 ) as a co-catalyst. High bulk and surface TiO 2 concentrations correspond with enhanced nanofiber reactivity, while PTA as a dispersant makes it possible to fabricate materials at very high P25 loadings (∼80% wt%). The optimal composite formulation (50 wt% P25 with 2.5 wt% PTA) combining high reactivity and material stability was then tested across a range of variables relevant to filtration applications including filter thickness (300–1800 μm), permeate flux (from 540–2700 L m −2 h), incident light energy (UV-254 and simulated sunlight), flow configuration (dead-end and cross-flow filtration),more »presence of potentially interfering co-solutes (dissolved organic matter and carbonate alkalinity), and across a suite of eight organic micropollutants (atrazine, benzotriazole, caffeine, carbamazepine, DEET, metoprolol, naproxen, and sulfamethoxazole). During cross-flow recirculation under UV-irradiation, 300 μm thick filters (30 mg total mass) produced micropollutant half-lives ∼45 min, with 40–90% removal (from an initial 0.5 μM concentration) in a single pass through the filter. The initial reaction rate coefficients of micropollutant transformation did not clearly correlate with reported second order rate coefficients for reaction with hydroxyl radical ( k OH ), implying that processes other than reaction with photogenerated hydroxyl radical ( e.g. , surface sorption) may control the overall rate of transformation. The materials developed herein represent a promising next-generation filtration technology that integrates photocatalytic activity in a robust platform for nanomaterial-enabled water treatment.« less
  4. Carbon “quantum” dots or carbon dots (CDots) exploit and enhance the intrinsic photoexcited state properties and processes of small carbon nanoparticles via effective nanoparticle surface passivation by chemical functionalization with organic species. The optical properties and photoinduced redox characteristics of CDots are competitive to those of established conventional semiconductor quantum dots and also fullerenes and other carbon nanomaterials. Highlighted here are major advances in the exploration of CDots for their serving as high-performance yet nontoxic fluorescence probes for one- and multi-photon bioimaging in vitro and in vivo, and for their uniquely potent antimicrobial function to inactivate effectively and efficiently some of the toughest bacterial pathogens and viruses under visible/natural or ambient light conditions. Opportunities and challenges in the further development of the CDots platform and related technologies are discussed.
  5. This study aimed to address the significant problems of bacterial biofilms found in medical fields and many industries. It explores the potential of classic photoactive carbon dots (CDots), with 2,2′-(ethylenedioxy)bis (ethylamine) (EDA) for dot surface functionalization (thus, EDA-CDots) for their inhibitory effect on B. subtilis biofilm formation and the inactivation of B. subtilis cells within established biofilm. The EDA-CDots were synthesized by chemical functionalization of selected small carbon nanoparticles with EDA molecules in amidation reactions. The inhibitory efficacy of CDots with visible light against biofilm formation was dependent significantly on the time point when CDots were added; the earlier the CDots were added, the better the inhibitory effect on the biofilm formation. The evaluation of antibacterial action of light-activated EDA-CDots against planktonic B. subtilis cells versus the cells in biofilm indicate that CDots are highly effective for inactivating planktonic cells but barely inactivate cells in established biofilms. However, when coupling with chelating agents (e.g., EDTA) to target the biofilm architecture by breaking or weakening the EPS protection, much enhanced photoinactivation of biofilm-associated cells by CDots was achieved. The study demonstrates the potential of CDots to prevent the initiation of biofilm formation and to inhibit biofilm growth at an early stage.more »Strategic combination treatment could enhance the effectiveness of photoinactivation by CDots to biofilm-associated cells.« less