skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging investigator series: meta-analyses on SARS-CoV-2 viral RNA levels in wastewater and their correlations to epidemiological indicators
Background: recent applications of wastewater-based epidemiology (WBE) have demonstrated its ability to track the spread and dynamics of COVID-19 at the community level. Despite the growing body of research, quantitative synthesis of SARS-CoV-2 RNA levels in wastewater generated from studies across space and time using diverse methods has not been performed. Objective: the objective of this study is to examine the correlations between SARS-CoV-2 RNA levels in wastewater and epidemiological indicators across studies, stratified by key covariates in study methodologies. In addition, we examined the association of proportions of positive detections in wastewater samples and methodological covariates. Methods: we systematically searched the Web of Science for studies published by February 16th, 2021, performed a reproducible screening, and employed mixed-effects models to estimate the levels of SARS-CoV-2 viral RNA quantities in wastewater samples and their correlations to the case prevalence, the sampling mode (grab or composite sampling), and the wastewater fraction analyzed ( i.e. , solids, solid–supernatant mixtures, or supernatants/filtrates). Results: a hundred and one studies were found; twenty studies (671 biosamples and 1751 observations) were retained following a reproducible screening. The mean positivity across all studies was 0.68 (95%-CI, [0.52; 0.85]). The mean viral RNA abundance was 5244 marker copies per mL (95%-CI, [0; 16 432]). The Pearson correlation coefficients between the viral RNA levels and case prevalence were 0.28 (95%-CI, [0.01; 0.51]) for daily new cases or 0.29 (95%-CI, [−0.15; 0.73]) for cumulative cases. The fraction analyzed accounted for 12.4% of the variability in the percentage of positive detections, followed by the case prevalence (9.3% by daily new cases and 5.9% by cumulative cases) and sampling mode (0.6%). Among observations with positive detections, the fraction analyzed accounted for 56.0% of the variability in viral RNA levels, followed by the sampling mode (6.9%) and case prevalence (0.9% by daily new cases and 0.8% by cumulative cases). While the sampling mode and fraction analyzed both significantly correlated with the SARS-CoV-2 viral RNA levels, the magnitude of the increase in positive detection associated with the fraction analyzed was larger. The mixed-effects model treating studies as random effects and case prevalence as fixed effects accounted for over 90% of the variability in SARS-CoV-2 positive detections and viral RNA levels. Interpretations: positive pooled means and confidence intervals in the Pearson correlation coefficients between the SARS-CoV-2 viral RNA levels and case prevalence indicators provide quantitative evidence that reinforces the value of wastewater-based monitoring of COVID-19. Large heterogeneities among studies in proportions of positive detections, viral RNA levels, and Pearson correlation coefficients suggest a strong demand for methods to generate data accounting for cross-study heterogeneities and more detailed metadata reporting. Large variance was explained by the fraction analyzed, suggesting sample pre-processing and fractionation as a direction that needs to be prioritized in method standardization. Mixed-effects models accounting for study level variations provide a new perspective to synthesize data from multiple studies.  more » « less
Award ID(s):
2047470
PAR ID:
10405113
Author(s) / Creator(s):
;  ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
8
Issue:
7
ISSN:
2053-1400
Page Range / eLocation ID:
1391 to 1407
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Viegas, C. (Ed.)
    Wastewater-based surveillance (WBS) on SARS-CoV-2 has been proved to be an effective approach to estimate the prevalence of COVID-19 in communities and cities. However, its application was overlooked at smaller scale, such as a single facility. Meat processing plants are hotspots for COVID-19 outbreaks due to their unique environment that are favorable for the survival and persistence of SARS-CoV-2. This is the first known WBS study in meat processing plants. The goal was to understand the temporal variation of the SARS-CoV-2 levels in wastewater from a meat processing plant in Canada during a three-month campaign and to find any correlation with clinically confirmed cases in the surrounding city area. Higher SARS-CoV-2 concentrations and detection frequencies were observed in the solid fraction compared to the liquid fraction of the wastewater. The viruses can be preserved in the solid fraction of wastewater for up to 12 days. The wastewater virus level did not correlate to the city-wide COVID-19 cases due to the unmatching scales. WBS on SARS-CoV-2 in meat processing plants can be useful for identifying COVID-19 outbreaks in the facility and serve as an effective alternative when resources for routine individual testing are not available. 
    more » « less
  2. Santos, Ricardo (Ed.)
    We developed and implemented a framework for examining how molecular assay sensitivity for a viral RNA genome target affects its utility for wastewater-based epidemiology. We applied this framework to digital droplet RT-PCR measurements of SARS-CoV-2 and Pepper Mild Mottle Virus genes in wastewater. Measurements were made using 10 replicate wells which allowed for high assay sensitivity, and therefore enabled detection of SARS-CoV-2 RNA even when COVID-19 incidence rates were relatively low (~10 −5 ). We then used a computational downsampling approach to determine how using fewer replicate wells to measure the wastewater concentration reduced assay sensitivity and how the resultant reduction affected the ability to detect SARS-CoV-2 RNA at various COVID-19 incidence rates. When percent of positive droplets was between 0.024% and 0.5% (as was the case for SARS-CoV-2 genes during the Delta surge), measurements obtained with 3 or more wells were similar to those obtained using 10. When percent of positive droplets was less than 0.024% (as was the case prior to the Delta surge), then 6 or more wells were needed to obtain similar results as those obtained using 10 wells. When COVID-19 incidence rate is low (~ 10 −5 ), as it was before the Delta surge and SARS-CoV-2 gene concentrations are <10 4 cp/g, using 6 wells will yield a detectable concentration 90% of the time. Overall, results support an adaptive approach where assay sensitivity is increased by running 6 or more wells during periods of low SARS-CoV-2 gene concentrations, and 3 or more wells during periods of high SARS-CoV-2 gene concentrations. 
    more » « less
  3. Objectives: The SARS-CoV-2 BQ.1* variant rapidly spread globally in late 2022, posing a challenge due to its increased immune evasion. Methods: We conducted a prevalence survey in Brazil from November 16 to December 22, 2022, as part of a cohort study. We conducted interviews and collected nasal samples for reverse transcription-polymerase chain reaction (RT-PCR) testing and whole-genome sequencing. Cumulative incidence was estimated using RT-PCR positivity, cycle threshold values, and external data on the dynamics of RT-PCR positivity following infection. Results: Among 535 participants, 54% had documented SARS-CoV-2 exposure before this outbreak and 74% had received COVID-19 vaccination. In this study, 14.8% tested positive for SARS-CoV-2, with BQ.1* identified in 90.7% of cases. Using case data and cycle threshold values, cumulative incidence was estimated at 56% (95% confidence interval, 36-88%). Of the 79 positive participants, 48.1% had a symptomatic illness, with a lower proportion fulfilling the World Health Organization COVID-19 case definition compared to prior Omicron waves. No participants required medical attention. Conclusions: Despite high population-level hybrid immunity, the BQ.1* variant attacked 56% of our population. Lower disease severity was associated with BQ.1* compared to prior Omicron variants. Hybrid immunity may provide protection against future SARS-CoV-2 variants but in this case was not able to prevent widespread transmission. 
    more » « less
  4. Abstract BackgroundThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread globally. However, the contribution of community versus household transmission to the overall risk of infection remains unclear. MethodsBetween November 2021 and March 2022, we conducted an active case-finding study in an urban informal settlement with biweekly visits across 1174 households with 3364 residents. Individuals displaying coronavirus disease 2019 (COVID-19)–related symptoms were identified, interviewed along with household contacts, and defined as index and secondary cases based on reverse-transcription polymerase chain reaction (RT-PCR) and symptom onset. ResultsIn 61 households, we detected a total of 94 RT-PCR–positive cases. Of 69 sequenced samples, 67 cases (97.1%) were attributed to the Omicron BA.1* variant. Among 35 of their households, the secondary attack rate was 50.0% (95% confidence interval [CI], 37.0%–63.0%). Women (relative risk [RR], 1.6 [95% CI, .9–2.7]), older individuals (median difference, 15 [95% CI, 2–21] years), and those reporting symptoms (RR, 1.73 [95% CI, 1.0–3.0]) had a significantly increased risk for SARS-CoV-2 secondary infection. Genomic analysis revealed substantial acquisition of viruses from the community even among households with other SARS-CoV-2 infections. After excluding community acquisition, we estimated a household secondary attack rate of 24.2% (95% CI, 11.9%–40.9%). ConclusionsThese findings underscore the ongoing risk of community acquisition of SARS-CoV-2 among households with current infections. The observed high attack rate necessitates swift booster vaccination, rapid testing availability, and therapeutic options to mitigate the severe outcomes of COVID-19. 
    more » « less
  5. Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods. 
    more » « less