Abstract The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO 2 levels.
more »
« less
A 600 kyr reconstruction of deep Arctic seawater δ 18 O from benthic foraminiferal δ 18 O and ostracode Mg ∕ Ca paleothermometry
Abstract. The oxygen isotopic composition of benthic foraminiferal tests (δ18Ob) is one of the pre-eminent tools for correlating marine sediments and interpreting past terrestrial ice volume and deep-ocean temperatures. Despite the prevalence of δ18Ob applications to marine sediment cores over the Quaternary, its use is limited in the Arctic Ocean because of low benthic foraminiferal abundances, challenges with constructing independent sediment core age models, and an apparent muted amplitude of Arctic δ18Ob variability compared to open-ocean records. Here we evaluate the controls on Arctic δ18Ob by using ostracode Mg/Ca paleothermometry to generate a composite record of the δ18O of seawater (δ18Osw) from 12 sediment cores in the intermediate to deep Arctic Ocean (700–2700 m) that covers the last 600 kyr based on biostratigraphy and orbitally tuned age models. Results show that Arctic δ18Ob was generally higher than open-ocean δ18Ob during interglacials but was generally equivalent to global reference records during glacial periods. The reduced glacial–interglacial Arctic δ18Ob range resulted in part from the opposing effect of temperature, with intermediate to deep Arctic warming during glacials counteracting the whole-ocean δ18Osw increase from expanded terrestrial ice sheets. After removing the temperature effect from δ18Ob, we find that the intermediate to deep Arctic experienced large (≥1 ‰) variations in local δ18Osw, with generally higher local δ18Osw during interglacials and lower δ18Osw during glacials. Both the magnitude and timing of low local δ18Osw intervals are inconsistent with the recent proposal of freshwater intervals in the Arctic Ocean during past glaciations. Instead, we suggest that lower local δ18Osw in the intermediate to deep Arctic Ocean during glaciations reflected weaker upper-ocean stratification and more efficient transport of low-δ18Osw Arctic surface waters to depth by mixing and/or brine rejection.
more »
« less
- PAR ID:
- 10405130
- Date Published:
- Journal Name:
- Climate of the Past
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1814-9332
- Page Range / eLocation ID:
- 555 to 578
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Paleoceanographic interpretations of Plio-Pleistocene climate variability over the past 5 million years rely on the evaluation of event timing of proxy changes in sparse records across multiple ocean basins. In turn, orbital-scale chronostratigraphic controls for these records are often built from stratigraphic alignment of benthic foraminiferal stable oxygen isotope (δ18O) records to a preferred dated target stack or composite. This chronostratigraphic age model approach yields age model uncertainties associated with alignment method, target selection, the assumption that the undated record and target experienced synchronous changes in benthic foraminiferal δ18O values, and the assumption that any possible stratigraphic discontinuities within the undated record have been appropriately identified. However, these age model uncertainties and their impact on paleoceanographic interpretations are seldom reported or discussed. Here, we investigate and discuss these uncertainties for conventional manual and automated tuning techniques based on benthic foraminiferal δ18O records and evaluate their impact on sedimentary age models over the past 3.5 Myr using three sedimentary benthic foraminiferal δ18O records as case studies. In one case study, we present a new benthic foraminiferal δ18O record for International Ocean Discovery Program (IODP) Site U1541 (54°13′ S, 125°25′ W), recently recovered from the South Pacific on IODP Expedition 383. The other two case studies examine published benthic foraminiferal δ18O records of Ocean Drilling Program (ODP) Site 1090 and the ODP Site 980/981 composite. Our analysis suggests average age uncertainties of 3 to 5 kyr associated with manually derived versus automated alignment, 1 to 3 kyr associated with automated probabilistic alignment itself, and 2 to 6 kyr associated with the choice of tuning target. Age uncertainties are higher near stratigraphic segment ends and where local benthic foraminiferal δ18O stratigraphy differs from the tuning target. We conclude with recommendations for community best practices for the development and characterization of age uncertainty of sediment core chronostratigraphies based on benthic foraminiferal δ18O records.more » « less
-
Abstract. We use a recent reconstruction of global mean sea surface temperature change relative to preindustrial (ΔGMSST) over the last 4.5 Myr together with independent proxy-based reconstructions of bottom water (ΔBWT) or deep-ocean (ΔDOT) temperatures to infer changes in mean ocean temperature (ΔMOT). Three independent lines of evidence show that the ratio of ΔMOT / ΔGMSST, which is a measure of ocean heat storage efficiency (HSE), increased from ∼ 0.5 to ∼ 1 during the Middle Pleistocene Transition (MPT, 1.5–0.9 Ma), indicating an increase in ocean heat uptake (OHU) at this time. The first line of evidence comes from global climate models; the second from proxy-based reconstructions of ΔBWT, ΔMOT, and ΔGMSST; and the third from decomposing a global mean benthic δ18O stack (δ18Ob) into its temperature (δ18OT) and seawater (δ18Osw) components. Regarding the latter, we also find that further corrections in benthic δ18O, probably due to some combination of a long-term diagenetic overprint and to the carbonate ion effect, are necessary to explain reconstructed Pliocene sea-level highstands inferred from δ18Osw. We develop a simple conceptual model that invokes an increase in OHU and HSE during the MPT in response to changes in deep-ocean circulation driven largely by surface forcing of the Southern Ocean. Our model accounts for heat uptake and temperature in the non-polar upper ocean (0–2000 m) that is mainly due to wind-driven ventilation, while changes in the deeper ocean (> 2000 m) in both polar and non-polar waters occur due to high-latitude deepwater formation. We propose that deepwater formation was substantially reduced prior to the MPT, effectively decreasing HSE. We attribute these changes in deepwater formation across the MPT to long-term cooling which caused a change starting ∼ 1.5 Ma from a highly stratified Southern Ocean due to warm SSTs and reduced sea-ice extent to a Southern Ocean which, due to colder SSTs and increased sea-ice extent, had a greater vertical exchange of water masses.more » « less
-
Speleothem δ18O records from central southern China have long been regarded as a key benchmark for Asian summer monsoon intensity. However, the similar δ18O minima observed among precession minima and their link to seasonal precipitation mixing remains unclear. Here, we present a 400,000-y record of summer precipitation δ18O from loess microcodium, which captures distinct precession cycles similar to those seen in speleothem δ18O records, particularly during glacial periods. Notably, our microcodium δ18O record reveals very low-δ18O values during precession minima at peak interglacials, a feature absent in speleothem δ18O records from central southern China. This discrepancy suggests that the mixed summer and nonsummer climatic signals substantially influence the speleothem δ18O records from central southern China. Proxy-model comparisons indicate that the lack of very low-δ18O values in speleothem δ18O records is due to an attenuated summer signal contribution, resulting from a lower summer-to-annual precipitation ratio in southern China at strong monsoon intervals. Our findings offer a potential explanation for the long-standing puzzle of the absence of 100- and 41-kyr cycles in speleothem δ18O records and underscore the critical role of seasonality in interpreting paleoclimatic proxies in central southern China. These insights also have broader implications for interpreting speleothem δ18O records globally, advocating for a more multiseason interpretive framework.more » « less
-
null (Ed.)ABSTRACT There is a growing database of radiocarbon ( 14 C) reconstructions from biogenic carbonate taken from marine sediment cores being used to investigate changing ocean circulation and carbon cycling at the end of the last great ice age. Reported here are 14 C results from a marine core taken in the Makassar Straits of the western equatorial Pacific that was intended to test whether there was evidence of geologic carbon release to the ocean during the glacial termination. A thorough investigation of planktic and benthic 14 C ages with stable isotopes and CT-scans revealed extensive burrowing in the upper 2 m of the core that displaced younger sediments downward by more than half a meter into the glacial section of the core. The vertical displacement is evident in both planktic and benthic fossils. However, the extent of displacement and the stratigraphic disturbance became evident only after multiple measurements of different species and genera. A CT-scan prior to sampling would be an effective screening tool to avoid sampling problem cores such as this.more » « less
An official website of the United States government

