skip to main content


Title: Base excision repair of the N -(2-deoxy- d - erythro -pentofuranosyl)-urea lesion by the hNEIL1 glycosylase
Abstract

The N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and β deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase. The structure of a complex between the active site unedited mutant CΔ100 P2G hNEIL1 (K242) glycosylase and double-stranded (ds) DNA containing a urea lesion reveals a pre-cleavage intermediate, in which the Gly2 N-terminal amine forms a conjugate with the deoxyribose C1′ of the lesion, with the urea moiety remaining intact. This structure supports a proposed catalytic mechanism in which Glu3-mediated protonation of O4′ facilitates attack at deoxyribose C1′. The deoxyribose is in the ring-opened configuration with the O4′ oxygen protonated. The electron density of Lys242 suggests the ‘residue 242-in conformation’ associated with catalysis. This complex likely arises because the proton transfer steps involving Glu6 and Lys242 are hindered due to Glu6-mediated H-bonding with the Gly2 and the urea lesion. Consistent with crystallographic data, biochemical analyses show that the CΔ100 P2G hNEIL1 (K242) glycosylase exhibits a residual activity against urea-containing dsDNA.

 
more » « less
NSF-PAR ID:
10405212
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
51
Issue:
8
ISSN:
0305-1048
Page Range / eLocation ID:
p. 3754-3769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The versatile nucleotide excision repair (NER) pathway initiates as the XPC–RAD23B–CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4–Rad23-Rad33 (yeast homologue of XPC–RAD23B–CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9–9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.

     
    more » « less
  2. Uracil is a common DNA lesion which is recognized and removed by uracil DNA-glycosylase (UDG) as a part of the base excision repair pathway. Excision proceeds by base flipping, and UDG efficiency is thought to depend on the ease of deformability of the bases neighboring the lesion. We used molecular dynamics simulations to assess the flexibility of a large library of dsDNA strands, containing all tetranucleotide motifs with U:A, U:G, T:A or C:G base pairs. Our study demonstrates that uracil damaged DNA largely follows trends in flexibility of undamaged DNA. Measured bending persistence lengths, groove widths, step parameters and base flipping propensities demonstrate that uracil increases the flexibility of DNA, and that U:G base paired strands are more flexible than U:A strands. Certain sequence contexts are more deformable than others, with a key role for the 3’ base next to uracil. Flexibilities are large when this base is an A or G, and repressed for a C or T. A 5’ T adjacent to the uracil strongly promotes flexibility, but other 5’ bases are less influential. DNA bending is correlated to step deformations and base flipping, and bending aids flipping. Our study implies that the link between substrate flexibility and UDG efficiency is widely valid, helps explain why UDG prefers to bind U:G base paired strands, and suggests that the DNA bending angle of the UDG-substrate complex is optimal for base flipping. 
    more » « less
  3. Abstract Uracil DNA-glycosylase (UNG) is a DNA repair enzyme that removes the highly mutagenic uracil lesion from DNA using a base flipping mechanism. Although this enzyme has evolved to remove uracil from diverse sequence contexts, UNG excision efficiency depends on DNA sequence. To provide the molecular basis for rationalizing UNG substrate preferences, we used time-resolved fluorescence spectroscopy, NMR imino proton exchange measurements, and molecular dynamics simulations to measure UNG specificity constants ( k cat / K M ) and DNA flexibilities for DNA substrates containing central AUT, TUA, AUA, and TUT motifs. Our study shows that UNG efficiency is dictated by the intrinsic deformability around the lesion, establishes a direct relationship between substrate flexibility modes and UNG efficiency, and shows that bases immediately adjacent to the uracil are allosterically coupled and have the greatest impact on substrate flexibility and UNG activity. The finding that substrate flexibility controls UNG efficiency is likely significant for other repair enzymes and has major implications for the understanding of mutation hotspot genesis, molecular evolution, and base editing. 
    more » « less
  4. Abstract

    Urea is an available and readily used source of nitrogen for giant kelp,Macrocystis pyrifera, but little is known about its potential importance for sustaining growth. Results of kinetic experiments indicate urea uptake saturates at an average maximum rate (Vmax) of 0.73–0.92 μmol N g dw−1h−1with a half saturation constant (Ks) of 1.02–1.08 μM. The affinity of giant kelp for urea was high relative to that reported for other seaweeds. However, results of similar kinetics experiments with natural, co‐occurring phytoplankton communities indicate that the rate of urea uptake by phytoplankton was > 10‐fold higher than that of giant kelp. Urea uptake by giant kelp decreased 3–12% in darkness (relative to in light) compared to a 66–85% decline for phytoplankton. Similar differences were observed for ammonium and nitrate, suggesting that light intensity and photocycles influence the outcome of competition for N between giant kelp and phytoplankton. Monthly measures of urease in kelp tissues revealed persistent activity at levels that were 100‐fold higher than rates of urea uptake (0.13–0.35 μmol N g fw−1min−1). This finding, coupled with unsuccessful efforts to induce additional urease activity through substrate additions, suggests that urease plays a role in giant kelp physiology beyond that of processing urea taken up from the environment. Collectively, our results suggest giant kelp uses multiple forms of N including urea to sustain year‐round growth. Its consistent capacity to acquire N during both day and night may help offset its low uptake rates relative to phytoplankton and increase its ability to compete for N during periods of low N availability.

     
    more » « less
  5. The adenine, cytosine, and guanine bases of DNA are susceptible to alkylation by the aldehyde products of lipid peroxidation and by the metabolic byproducts of vinyl chloride pollutants. The resulting adducts spontaneously cyclize to form harmful etheno lesions. Cells employ a variety of DNA repair pathways to protect themselves from these pro-mutagenic modifications. Human alkyladenine DNA glycosylase (AAG) is thought to initiate base excision repair of both 1, N 6 -ethenoadenine (ϵA) and 1, N 2 -ethenoguanine (ϵG). However, it is not clear how AAG might accommodate ϵG in an active site that is complementary to ϵA. This prompted a thorough investigation of AAG-catalyzed excision of ϵG from several relevant contexts. Using single-turnover and multiple-turnover kinetic analyses, we found that ϵG in its natural ϵG·C context is very poorly recognized relative to ϵA·T. Bulged and mispaired ϵG contexts, which can form during DNA replication, were similarly poor substrates for AAG. Furthermore, AAG could not recognize an ϵG site in competition with excess undamaged DNA sites. Guided by previous structural studies, we hypothesized that Asn-169, a conserved residue in the AAG active-site pocket, contributes to discrimination against ϵG. Consistent with this model, the N169S variant of AAG was 7-fold more active for excision of ϵG compared with the wildtype (WT) enzyme. Taken together, these findings suggest that ϵG is not a primary substrate of AAG, and that current models for etheno lesion repair in humans should be revised. We propose that other repair and tolerance mechanisms operate in the case of ϵG lesions. 
    more » « less