Abstract High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of engineered and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes via calculation of an optimization metric, thus determining the fitness effect of disrupted genes. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeastYarrowia lipolyticaand acCRISPR was used to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in screens quantifying relative cellular fitness under high salt conditions to identify genes that were related to salt tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest. 
                        more » 
                        « less   
                    
                            
                            Analyzing CRISPR screens in non-conventional microbes
                        
                    
    
            Abstract  The multifaceted nature of CRISPR screens has propelled advancements in the field of functional genomics. Pooled CRISPR screens involve creating programmed genetic perturbations across multiple genomic sites in a pool of host cells subjected to a challenge, empowering researchers to identify genetic causes of desirable phenotypes. These genome-wide screens have been widely used in mammalian cells to discover biological mechanisms of diseases and drive the development of targeted drugs and therapeutics. Their use in non-model organisms, especially in microbes to improve bioprocessing-relevant phenotypes, has been limited. Further compounding this issue is the lack of bioinformatic algorithms for analyzing microbial screening data with high accuracy. Here, we describe the general approach and underlying principles for conducting pooled CRISPR knockout screens in non-conventional yeasts and performing downstream analysis of the screening data, while also reviewing state-of-the-art algorithms for identification of CRISPR screening outcomes. Application of pooled CRISPR screens to non-model yeasts holds considerable potential to uncover novel metabolic engineering targets and improve industrial bioproduction. One-Sentence SummaryThis mini-review describes experimental and computational approaches for functional genomic screening using CRISPR technologies in non-conventional microbes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10405244
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Industrial Microbiology and Biotechnology
- Volume:
- 50
- Issue:
- 1
- ISSN:
- 1367-5435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of novel and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes, thus determining the fitness effect of disrupted genes. This is accomplished by calculating an optimization metric that quantifies the tradeoff between guide activity and library coverage, which is maximized to accurately classify genes essential to screening conditions. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeast Yarrowia lipolytica to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in gain-and loss-of-function screens under high salt and low pH conditions to identify known and novel genes that were related to stress tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest.more » « less
- 
            Abstract In less than a decade, CRISPR screening has revolutionized forward genetics and cell and molecular biology. Advances in screening technologies, including sgRNA libraries, Cas9‐expressing cell lines, and streamlined sequencing pipelines, have democratized pooled CRISPR screens at genome‐wide scale. Initially, many such screens were survival‐based, identifying essential genes in physiological or perturbed processes. With the application of new chemical biology tools to CRISPR screening, the phenotypic space is no longer limited to live/dead selection or screening for levels of conventional fluorescent protein reporters. Further, the resolution has been increased from cell populations to single cells or even the subcellular level. We highlight advances in pooled CRISPR screening, powered by chemical biology, that have expanded phenotypic space, resolution, scope, and scalability as well as strengthened the CRISPR/Cas enzyme toolkit to enable biological hypothesis generation and discovery.more » « less
- 
            The ENCODE Consortium’s efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE–gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.more » « less
- 
            Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas genome-wide screens are powerful tools for unraveling genotype–phenotype relationships, enabling precise manipulation of genes to study and engineer industrially useful traits. Traditional genetic methods, such as random mutagenesis or RNA interference, often lack the specificity and scalability required for large-scale functional genomic screens. CRISPR systems overcome these limitations by offering precision gene targeting and manipulation, allowing for high-throughput investigations into gene function and interactions. Recent work has shown that CRISPR genome editing is widely adaptable to several yeast species, many of which have natural traits suited for industrial biotechnology. In this review, we discuss recent advances in yeast functional genomics, emphasizing advancements made with CRISPR tools. We discuss how the development and optimization of CRISPR genome-wide screens have enabled a host-first approach to metabolic engineering, which takes advantage of the natural traits of nonconventional yeast—fast growth rates, high stress tolerance, and novel metabolism—to create new production hosts. Lastly, we discuss future directions, including automation and biosensor-driven screens, to enhance high-throughput CRISPR-enabled yeast engineering.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
