Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant,
Climate change has influenced species distributions worldwide with upward elevational shifts observed in many systems. Leading range edge populations, like those at upper elevation limits, are crucial for climate change responses but can exhibit low genetic diversity due to founder effects, isolation, or limited outbreeding. These factors can hamper local adaptation at range limits. Using the widespread herb,
- Award ID(s):
- 2015459
- NSF-PAR ID:
- 10405397
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Heredity
- Volume:
- 130
- Issue:
- 6
- ISSN:
- 0018-067X
- Page Range / eLocation ID:
- p. 347-357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Mimulus laciniatus , in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation‐based climate range. Contrary to expectations, within‐population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation‐driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high‐ and low‐elevation range limits and were inconsistent with two common centre‐edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre‐edge dynamics, is an important range‐wide factor structuringM. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed. -
Abstract Colonization at expanding range edges often involves few founders, reducing effective population size. This process can promote the evolution of self-fertilization, but implicating historical processes as drivers of trait evolution is often difficult and requires an explicit model of biogeographic history. In plants, contemporary limits to outcrossing are often invoked as evolutionary drivers of self-fertilization, but historical expansions may shape mating system diversity, with leading-edge populations evolving elevated selfing ability. In a widespread plant, Campanula americana, we identified a glacial refugium in the southern Appalachian Mountains from spatial patterns of genetic drift among 24 populations. Populations farther from this refugium have smaller effective sizes and fewer rare alleles. They also displayed elevated heterosis in among-population crosses, reflecting the accumulation of deleterious mutations during range expansion. Although populations with elevated heterosis had reduced segregating mutation load, the magnitude of inbreeding depression lacked geographic pattern. The ability to self-fertilize was strongly positively correlated with the distance from the refugium and mutation accumulation—a pattern that contrasts sharply with contemporary mate and pollinator limitation. In this and other species, diversity in sexual systems may reflect the legacy of evolution in small, colonizing populations, with little or no relation to the ecology of modern populations.
-
Abstract Although rarely experimentally tested, biotic interactions have long been hypothesised to limit low‐elevation range boundaries of species. We tested the effects of herbivory on three alpine‐restricted plant species by transplanting plants below (novel), at the edge (limit), or in the centre (core) of their current elevational range and factorially fencing‐out above‐ and belowground mammals. Herbivore damage was greater in range limit and novel habitats than in range cores. Exclosures increased plant biomass and reproduction more in novel habitats than in range cores, suggesting demographic costs of novel interactions with herbivores. We then used demographic models to project population growth rates, which increased 5–20% more under herbivore exclosure at range limit and novel sites than in core habitats. Our results identify mammalian herbivores as key drivers of the low‐elevation range limits of alpine plants and indicate that upward encroachment of herbivores could trigger local extinctions by depressing plant population growth.
-
Abstract Plant genome size influences the functional relationships between cellular and whole‐plant physiology, but we know little about its importance to plant tolerance of environmental stressors and how it contributes to range limits and invasion success. We used native and invasive lineages of a wetland plant to provide the first experimental test of the Large Genome Constraint Hypothesis (LGCH)—that plants with large genomes are less tolerant of environmental stress and less plastic under stress gradients than plants with small genomes. We predicted that populations with larger genomes would have a lower tolerance and less plasticity to a stress gradient than populations with smaller genomes. In replicated experiments in northern and southern climates in the United States, we subjected plants from 35 populations varying in genome size and lineage to two salinity treatments. We measured traits associated with growth, physiology, nutrition, defense, and plasticity. Using AICc model selection, we found all plant traits, except stomatal conductance, were influenced by environmental stressors and genome size. Increasing salinity was stressful to plants and affected most plant traits. Notably, biomass in the high‐salinity treatment was 3.0 and 4.9 times lower for the invasive and native lineages, respectively. Plants in the warmer southern greenhouse had higher biomass, stomate density, stomatal conductance, leaf toughness, and lower aboveground percentage of N and total phenolics than in the northern greenhouse. Moreover, responses to the salinity gradient were generally much stronger in the southern than northern greenhouse. Aboveground biomass increased significantly with genome size for the invasive lineage (43% across genome sizes) but not for the native. For 8 of 20 lineage trait comparisons, greenhouse location × genome size interaction was also significant. Interestingly, the slope of the relationship between genome size and trait means was in the opposite direction for some traits between the gardens providing mixed support for LGCH. Finally, for 30% of the comparisons, plasticity was significantly related to genome size—for some plant traits, the relationship was positive, and in others, it was negative. Overall, we found mixed support for LGCH and for the first time found that genome size is associated with plasticity, a trait widely regarded as important to invasion success.
-
Abstract Shifts in species geographic distributions in response to climate change have spurred numerous studies to determine which abiotic (e.g. climatic) and, less commonly, biotic (e.g. competitive) processes determine range limits. However, the impact of disturbances on range limits and their interactions with climatic and biotic effects is not well understood, despite their potential to alter competitive relationships between species or override climatic effects. Disturbance might have differential effects at contrasting range limits, based on Darwin's theory that biotic interactions set abiotically benign range limits and abiotic factors set abiotically stressful range limits.
We predicted that plants at lower elevation (abiotically benign) range limits experience a net positive effect of disturbance, whereas those at higher elevation (abiotically stressful) range limits experience a net neutral effect. We examined plant populations along elevational gradients in the Colorado Rocky Mountains, in order to quantify the effects of human trampling disturbance at lower and upper elevational range limits of the common alpine cushion plants
Silene acaulis andMinuartia obtusiloba .Our results are consistent with Darwin's theory. A disturbance‐mediated reduction of competitive effects increases the performance of cushion plants at lower elevations, suggesting a range limit set by biotic factors. At higher elevations, where biotic interactions are minimal, disturbance has neutral or negative effects on cushion plants.
Synthesis and applications . Human trampling disturbance exerts differential effects on alpine cushion plant populations at contrasting range limits, emphasizing the need to account for the effects of climate change into the management and conservation of disturbed areas. Disturbance can diminish plant–plant competitive interactions at lower elevational range limits, and thus possibly stabilize alpine species populations susceptible to climate change‐mediated encroachment by lower elevation species. Conservation and management approaches should therefore particularly account for the differential effects of disturbance across climatic gradients.