skip to main content


Title: Water availability and seasonality shape elemental stoichiometry across space and time
Abstract

The interaction of climate change and increasing anthropogenic water withdrawals is anticipated to alter surface water availability and the transport of carbon (C), nitrogen (N), and phosphorus (P) in river networks. But how changes to river flow will alter the balance, or stoichiometry, of these fluxes is unknown. The Lower Flint River Basin (LFRB) is part of an interstate watershed relied upon by several million people for diverse ecosystem services, including seasonal crop irrigation, municipal drinking water access, and public recreation. Recently, increased water demand compounded with intensified droughts have caused historically perennial streams in the LFRB to cease flowing, increasing ecosystem vulnerability. Our objectives were to quantify how riverine dissolved C:N:P varies spatially and seasonally and determine how monthly stoichiometric fluxes varied with overall water availability in a major tributary of LFRB. We used a long‐term record (21–29 years) of solute water chemistry (dissolved organic carbon, nitrate/nitrite, ammonia, and soluble reactive phosphorus) paired with long‐term stream discharge data across six sites within a single LFRB watershed. We found spatial and seasonal differences in soluble nutrient concentrations and stoichiometry attributable to groundwater connections, the presence of a major floodplain wetland, and flow conditions. Further, we showed that water availability, as indicated by the Palmer Drought Severity Index (PDSI), strongly predicted stoichiometry with generally lower C:N and C:P and higher N:P fluxes during periods of low water availability (PDSI < −4). These patterns suggest there may be long‐term and significant changes to stream ecosystem function as water availability is being dramatically altered by human demand with consequential impacts on solute transport, in‐stream processing, and stoichiometric ratios.

 
more » « less
Award ID(s):
2150626 1942707
NSF-PAR ID:
10405405
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Volume:
33
Issue:
4
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The concurrent reduction in acid deposition and increase in precipitation impact stream solute dynamics in complex ways that make predictions of future water quality difficult. To understand how changes in acid deposition and precipitation have influenced dissolved organic carbon (DOC) and nitrogen (N) loading to streams, we investigated trends from 1991 to 2018 in stream concentrations (DOC, ~3,800 measurements), dissolved organic nitrogen (DON, ~1,160 measurements), and dissolved inorganic N (DIN, ~2,130 measurements) in a forested watershed in Vermont, USA. Our analysis included concentration-discharge (C-Q) relationships and Seasonal Mann-Kendall tests on long-term, flow-adjusted concentrations. To understand whether hydrologic flushing and changes in acid deposition influenced long-term patterns by liberating DOC and dissolved N from watershed soils, we measured their concentrations in the leachate of 108 topsoil cores of 5 cm diameter that we flushed with solutions simulating high and low acid deposition during four different seasons. Our results indicate that DOC and DON often co-varied in both the long-term stream dataset and the soil core experiment. Additionally, leachate from winter soil cores produced especially high concentrations of all three solutes. This seasonal signal was consistent with C-Q relation showing that organic materials (e.g., DOC and DON), which accumulate during winter, are flushed into streams during spring snowmelt. Acid deposition had opposite effects on DOC and DON compared to DIN in the soil core experiment. Low acid deposition solutions, which mimic present day precipitation, produced the highest DOC and DON leachate concentrations. Conversely, high acid deposition solutions generally produced the highest DIN leachate concentrations. These results are consistent with the increasing trend in stream DOC concentrations and generally decreasing trend in stream DIN we observed in the long-term data. These results suggest that the impact of acid deposition on the liberation of soil carbon (C) and N differed for DOC and DON vs. DIN, and these impacts were reflected in long-term stream chemistry patterns. As watersheds continue to recover from acid deposition, stream C:N ratios will likely continue to increase, with important consequences for stream metabolism and biogeochemical processes. 
    more » « less
  2. Abstract

    Climate change is rapidly altering hydrological processes and consequently the structure and functioning of Arctic ecosystems. Predicting how these alterations will shape biogeochemical responses in rivers remains a major challenge. We measured [C]arbon and [N]itrogen concentrations continuously from two Arctic watersheds capturing a wide range of flow conditions to assess understudied event‐scale C and N concentration‐discharge (C‐Q) behavior and post‐event recovery of stoichiometric conditions. The watersheds represent low‐gradient, tundra landscapes typical of the eastern Brooks Range on the North Slope of Alaska and are part of the Arctic Long‐Term Ecological Research sites: the Kuparuk River and Oksrukuyik Creek. In both watersheds, we deployed high‐frequency optical sensors to measure dissolved organic carbon (DOC), nitrate (), and total dissolved nitrogen (TDN) for five consecutive thaw seasons (2017–2021). Our analyses revealed a lag in DOC: stoichiometric recovery after a hydrologic perturbation: while DOC was consistently elevated after high flows, diluted during rainfall events and consequently, recovery in post‐event concentration was delayed. Conversely, the co‐enrichment of TDN at high flows, even in watersheds with relatively high N‐demand, represents a potential “leak” of hydrologically available organic N to downstream ecosystems. Our use of high‐frequency, long‐term optical sensors provides an improved method to estimate carbon and nutrient budgets and stoichiometric recovery behavior across event and seasonal timescales, enabling new insights and conceptualizations of a changing Arctic, such as assessing ecosystem disturbance and recovery across multiple timescales.

     
    more » « less
  3. Abstract

    Large rivers are the main arteries for transportation of carbon to the ocean; yet, how hydrology and anthropogenic disturbances may change the composition and export of dissolved organic matter along large river continuums is largely unknown. The Yangtze River has a watershed area of 1.80 × 106 km2. It originates from the Qinghai‐Tibet Plateau and flows 6300 km eastward through the center of China. We collected samples (n= 271) along the river continuum and analyzed weekly samples at the most downstream situated gauging station in 2017–2018 and gathered long‐term (2006–2018) water quality data. We found higher gross domestic product, population density, and urban and agricultural land use downstream than upstream of the Three Gorges Dam, coinciding with higher dissolved organic carbon (DOC), UV absorption (a254), specific ultraviolet absorbance (SUVA254), parallel factor analysis‐derived C1–C5, aliphatic compounds, and lowera250:a365and spectral slope (S275–295). Chemical oxygen demand, humic‐like C1–C2 and C6, and protein‐like C4 and C7 increased, while dissolved oxygen and ammonium decreased with increasing discharge at most of the sites studied, including the intensively monitored downstream site. The annual DOC fluxes were ca. 1.5–1.8 Tg yr−1, and 12–18% was biodegradable in a 28‐d bio‐incubation. Our results highlight that urbanization and stormwater periods enhanced the export of both terrestrial organic‐rich substances and household effluents from nearshore residential areas. Our study emphasizes the continued need to protect the Yangtze River watershed as increased organic carbon loading or altered composition and bio‐lability may change the ecosystem function and carbon cycling.

     
    more » « less
  4. Abstract Global chronic nitrogen (N) deposition to forests can alleviate ecosystem N limitation, with potentially wide ranging consequences for biodiversity, carbon sequestration, soil and surface water quality, and greenhouse gas emissions. However, the ability to predict these consequences requires improved quantification of hard-to-measure N fluxes, particularly N gas loss and soil N retention. Here we combine a unique set of long-term catchment N budgets in the central Europe with ecosystem 15 N data to reveal fundamental controls over dissolved and gaseous N fluxes in temperate forests. Stream leaching losses of dissolved N corresponded with nutrient stoichiometry of the forest floor, with stream N losses increasing as ecosystems progress towards phosphorus limitation, while soil N storage increased with oxalate extractable iron and aluminium content. Our estimates of soil gaseous losses based on 15 N stocks averaged 2.5 ± 2.2 kg N ha −1 yr −1 and comprised 20% ± 14% of total N deposition. Gaseous N losses increased with forest floor N:P ratio and with dissolved N losses. Our relationship between gaseous and dissolved N losses was also able to explain previous 15 N-based N loss rates measured in tropical and subtropical catchments, suggesting a generalisable response driven by nitrate (NO 3 − ) abundance and in which the relative importance of dissolved N over gaseous N losses tended to increase with increasing NO 3 − export. Applying this relationship globally, we extrapolated current gaseous N loss flux from forests to be 8.9 Tg N yr −1 , which represent 39% of current N deposition to forests worldwide. 
    more » « less
  5. Abstract

    Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28‐day incubations. We incubated late‐summer stream water from 23 locations nested in seven northern or high‐altitude regions in Asia, Europe, and North America. DOM loss ranged from 3% to 52%, showing a variety of longitudinal patterns within stream networks. DOM optical properties varied widely, but DOM showed compositional similarity based on Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) analysis. Addition of acetate and nutrients decreased bulk DOM mineralization (i.e., negative priming), with more negative effects on biodegradable DOM but neutral or positive effects on stable DOM. Unexpectedly, acetate and nutrients triggered breakdown of colored DOM (CDOM), with median decreases of 1.6% in the control and 22% in the amended treatment. Additionally, the uptake of added acetate was strongly limited by nutrient availability across sites. These findings suggest that biolabile DOM and nutrients released from degrading permafrost may decrease background DOM mineralization but alter stoichiometry and light conditions in receiving waterbodies. We conclude that priming and nutrient effects are coupled in northern aquatic ecosystems and that quantifying two‐way interactions between DOM properties and environmental conditions could resolve conflicting observations about the drivers of DOM in permafrost zone waterways.

     
    more » « less