skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis
Rapid alternating polarity greatly expands the functional compatibility of a venerable electrochemical carbon–carbon coupling.  more » « less
Award ID(s):
2002158
PAR ID:
10405493
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Science
Volume:
380
Issue:
6640
ISSN:
0036-8075
Page Range / eLocation ID:
81 to 87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To reduce their environmental impact, cloud datacenters' are increasingly focused on optimizing applications' carbon-efficiency, or work done per mass of carbon emitted. To facilitate such optimizations, we present Carbon Containers, a simple system-level facility, which extends prior work on power containers, that automatically regulates applications' carbon emissions in response to variations in both their work-load's intensity and their energy's carbon-intensity. Specifically, Carbon Containers enable applications to specify a maximum carbon emissions rate (in g.CO2e/hr), and then transparently enforce this rate via a combination of vertical scaling, container migration, and suspend/resume while maximizing either energy-efficiency or performance. Carbon Containers are especially useful for applications that i) must continue running even during high-carbon periods, and ii) execute in regions with few variations in carbon-intensity. These low-variability regions also tend to have high average carbon-intensity, which increases the importance of regulating carbon emissions. We implement a Carbon Container prototype by extending Linux Containers to incorporate the mechanisms above and evaluate it using real workload traces and carbon-intensity data from multiple regions. We compare Carbon Containers with prior work that regulates carbon emissions by suspending/resuming applications during high/low carbon periods. We show that Carbon Containers are more carbon-efficient and improve performance while maintaining similar carbon emissions. 
    more » « less
  2. Blue carbon habitats, such as mangroves and salt marshes, have been recognized as carbon burial hotspots; however, methods on measuring blue carbon stocks have varied and thus leave uncertainty in global blue carbon stock estimates. This study analyzes blue carbon stocks in northern Florida wetlands along the Atlantic and Gulf coasts. Carbon measurements within 1–3m length vibracores yield total core stocks of 9.9–21.5 kgC·m −2 and 7.7–10.9 kgC·m −2 for the Atlantic and Gulf coast cores, respectively. Following recent IPCC guidelines, blue carbon stock estimates in the top meter are 7.0 kgC·m −2 –8.0 kgC·m −2 and 6.1 kgC·m −2 –8.6 kgC·m −2 for the Atlantic and Gulf cores, respectively. Changes in stable isotopic (δ 13 C, C/N) and lignin biomarker (C/V) indices suggest both coastlines experienced salt marsh and mangrove transgressions into non-blue carbon habitats during the mid- to late-Holocene following relative sea-level rise. These transgressions impact carbon storage within the cores as the presence of carbon-poor soils, characteristic of non-blue carbon habitats, result in lower 1m carbon stocks in north Florida Gulf wetlands, and a deeper extent of carbon-rich soils, characteristic of blue carbon habitats, drive higher 1m and total carbon stocks in north Florida Atlantic wetlands. Future blue carbon research should assess carbon stocks down to bedrock when possible, as land-cover and/or climate change can impact different depths across localities. Ignoring carbon-rich soil below the top meter of soil may underestimate potential carbon emissions based on these changes. 
    more » « less
  3. Abstract Soil organic matter decomposition and its interactions with climate depend on whether the organic matter is associated with soil minerals. However, data limitations have hindered global-scale analyses of mineral-associated and particulate soil organic carbon pools and their benchmarking in Earth system models used to estimate carbon cycle–climate feedbacks. Here we analyse observationally derived global estimates of soil carbon pools to quantify their relative proportions and compute their climatological temperature sensitivities as the decline in carbon with increasing temperature. We find that the climatological temperature sensitivity of particulate carbon is on average 28% higher than that of mineral-associated carbon, and up to 53% higher in cool climates. Moreover, the distribution of carbon between these underlying soil carbon pools drives the emergent climatological temperature sensitivity of bulk soil carbon stocks. However, global models vary widely in their predictions of soil carbon pool distributions. We show that the global proportion of model pools that are conceptually similar to mineral-protected carbon ranges from 16 to 85% across Earth system models from the Coupled Model Intercomparison Project Phase 6 and offline land models, with implications for bulk soil carbon ages and ecosystem responsiveness. To improve projections of carbon cycle–climate feedbacks, it is imperative to assess underlying soil carbon pools to accurately predict the distribution and vulnerability of soil carbon. 
    more » « less
  4. Abstract Tropical forests account for over 50% of the global terrestrial carbon sink, but climate change threatens to alter the carbon balance of these ecosystems. We show that warming and drying of tropical forest soils may increase soil carbon vulnerability, by increasing degradation of older carbon. In situ whole-profile heating by 4 °C and 50% throughfall exclusion each increased the average radiocarbon age of soil CO2efflux by ~2–3 years, but the mechanisms underlying this shift differed. Warming accelerated decomposition of older carbon as increased CO2emissions depleted newer carbon. Drying suppressed decomposition of newer carbon inputs and decreased soil CO2emissions, thereby increasing contributions of older carbon to CO2efflux. These findings imply that both warming and drying, by accelerating the loss of older soil carbon or reducing the incorporation of fresh carbon inputs, will exacerbate soil carbon losses and negatively impact carbon storage in tropical forests under climate change. 
    more » « less
  5. Abstract Sinking marine particles, one pathway of the biological carbon pump, transports carbon to the deep ocean from the surface, thereby modulating atmospheric carbon dioxide and supplying benthic food. Few in situ measurements exist of sinking particles in the Northern Gulf of Alaska; therefore, regional carbon flux prediction is poorly constrained. In this study, we (1) characterize the strength and efficiency of the biological carbon pump and (2) identify drivers of carbon flux in the Northern Gulf of Alaska. We deployed up to five inline drifting sediment traps in the upper 150 m to simultaneously collect bulk carbon and intact sinking particles in polyacrylamide gels and measured net primary productivity from deck‐board incubations during the summer of 2019. We found high carbon flux magnitude, low attenuation with depth, and high export efficiency. We quantitatively attributed carbon flux between 10 particle types, including various fecal pellet categories, dense detritus, and aggregates using polyacrylamide gels. The contribution of aggregates to total carbon flux (41–93%) and total carbon flux variability (95%) suggest that aggregation processes, not zooplankton repackaging, played a dominant role in carbon export. Furthermore, export efficiency correlated significantly with the proportion of chlorophyllain the large size fraction (> 20 μm), total aggregate carbon flux, and contribution of aggregates to total carbon flux. These results suggest that this stratified, small‐cell‐dominated ecosystem can have sufficient aggregation to allow for a strong and efficient biological carbon pump. This is the first integrative description of the biological carbon pump in this region. 
    more » « less