Although broadening participation efforts aim to transform who has access to engineering by targeting those historically excluded, Black and Brown students’ participation remains stifled by the exclusionary culture and practices ingrained in engineering. Consequently, there is a need for scholarship that advances our understanding of systemic changes that center equity, challenge exclusionary cultural norms, and ultimately contribute to a disruption in the status quo of who gets to be an engineer. Using a multi-case research design that is framed by Kotter’s Leading Change theory and Acker’s Inequality Regimes as theoretical foundations, this CAREER award aims to uncover the change strategies institutionalized by five exemplary COEs to improve Black and Brown students’ access to engineering education and careers. This executive summary presents insights about the second year of the study and is organized around three topics—project overview, year 2 research activity summary, and looking ahead to year 3.
more »
« less
CAREER: Disrupting the Status Quo Regarding Who Gets to be an Engineer – Insights from Year 1
The historical exclusion of Black and Brown students from engineering can be linked to systemic racism embedded into engineering education. Rectifying this issue will require Colleges of Engineering to adopt a holistic change strategy to overcome this challenge. While existing scholarship has explored the barriers racially/ethnically minoritized students face in engineering and the change strategies that promote pedagogical innovations in engineering education, this CAREER project sits at the intersection of both topics. This CAREER Award is a multi-case study exploring five institutions that serve as exemplars for recruiting, retaining, and graduating the most Black and Brown undergraduate engineers over a recent decade. This executive summary presents insights about the first year of this study and is organized around four key topics: the project design, two key outputs of year one, preliminary insights from year one’s pilot interviews, and looking ahead to year two.
more »
« less
- Award ID(s):
- 2042377
- PAR ID:
- 10405500
- Date Published:
- Journal Name:
- CAREER: Disrupting the Status Quo Regarding Who Gets to be an Engineer – Insights from Year 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we discuss the results from our study on the experiences of first-year Black and Brown engineering students in engineering teams. This work is part of ongoing research on identifying teams engaging in marginalizing behaviors against minoritized (race, gender, LGBTQ identity, nationality) students. Using a diary study methodology, we explore the team experiences of Black and Brown students by examining two research questions: 1) what does racial marginalization look like within engineering classrooms where teamwork is a primary feature and 2) what experiences from the dairies inform researchers and faculty about participants’ experiences and personal knowledge of how race and racism operates in teams. We identified two central themes: 1) participants often avoided conversations when race could be a potential topic, and 2) participants believed that racism was a normal part of teams (in both the classroom and workplace). Participants explained that even if race was not explicitly discussed during their group work, they sensed that implicit bias and discrimination were affecting their experience. Further, when we asked participants how to increase support related to their teaming experience, they reported feeling unsure of what can be done to eliminate behaviors of racism and marginalization from engineering education. The participants expressed that change needed to happen so that other Black and Brown students are welcomed into the field, but that no one on campus (peers, faculty, and staff) has asked them about ideas for change. This diary study provides important insights into how Black and Brown engineering students contextualize their experience with marginalizing behaviors in teams.more » « less
-
The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44.more » « less
-
There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6]. The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley.more » « less
-
null (Ed.)Amidst growing concerns about a lack of attention to ethics in engineering education and professional practice, a variety of formal course-based interventions and informal or extracurricular programs have been created to improve the social and ethical commitments of engineering graduates. To supplement the formal and informal ethics education received as undergraduate students, engineering professionals often also participate in workplace training and professional development activities on ethics, compliance, and related topics. Despite this preparation, there is growing evidence to suggest that technical professionals are often challenged to navigate ethical situations and dilemmas. Some prior research has focused on assessing the impacts of a variety of learning experiences on students’ understandings of ethics and social responsibility, including the PIs’ prior NSF-funded CCE STEM study which followed engineering students through the four years of their undergraduate studies using both quantitative and qualitative research methods. This prior project explored how the students’ views on these topics changed across demographic groups, over time, between institutions, and due to specific interventions. Yet, there has been little longitudinal research on how these views and perceptions change (or do not change) among engineers during the school-to-work transition. Furthermore, there has been little exploration of how these views are influenced by the professional contexts in which these engineers work, including cultures and norms prevalent in different technical fields, organizations, and industry sectors. This NSF-supported Ethical and Responsible Research (ER2) study responds to these gaps in the literature by asking: RQ1) How do perceptions of ethics and social responsibility change in the transition from undergraduate engineering degree programs to the workplace (or graduate studies), and how are these perceptions shaped or influenced?, and RQ2) How do perceptions of ethics and social responsibility vary depending on a given individual’s engineering discipline/background and current professional setting? This paper gives an overview of the research project, describing in particular the longitudinal, mixed-methods study design which will involve collecting and analyzing data from a large sample of early career engineers. More specifically, we will present the proposed study contexts, timeline, target subject populations, and procedures for quantitative and qualitative data collection and analysis. We will also describe how this study leverages our prior project, thereby allowing unique longitudinal comparisons that span participants’ years as an engineering undergraduate student to their time as an early-career professional. Through this project, we aim to better understand how early career engineers’ perceptions of social and ethical responsibility are shaped by their prior experiences and current professional contexts. This paper will likely be of particular interest to scholars who teach or research engineering ethics, social responsibility, and professional practice.more » « less
An official website of the United States government

