Abstract Gene editing is a powerful tool for genome and cell engineering. Exemplified by CRISPR–Cas, gene editing could cause DNA damage and trigger DNA repair processes that are often error-prone. Such unwanted mutations and safety concerns can be exacerbated when altering long sequences. Here we couple microbial single-strand annealing proteins (SSAPs) with catalytically inactive dCas9 for gene editing. This cleavage-free gene editor, dCas9–SSAP, promotes the knock-in of long sequences in mammalian cells. The dCas9–SSAP editor has low on-target errors and minimal off-target effects, showing higher accuracy than canonical Cas9 methods. It is effective for inserting kilobase-scale sequences, with an efficiency of up to approximately 20% and robust performance across donor designs and cell types, including human stem cells. We show that dCas9–SSAP is less sensitive to inhibition of DNA repair enzymes than Cas9 references. We further performed truncation and aptamer engineering to minimize its size to fit into a single adeno-associated-virus vector for future application. Together, this tool opens opportunities towards safer long-sequence genome engineering.
more »
« less
Improving the sensitivity of in vivo CRISPR off-target detection with DISCOVER-Seq+
Abstract Discovery of off-target CRISPR–Cas activity in patient-derived cells and animal models is crucial for genome editing applications, but currently exhibits low sensitivity. We demonstrate that inhibition of DNA-dependent protein kinase catalytic subunit accumulates the repair protein MRE11 at CRISPR–Cas-targeted sites, enabling high-sensitivity mapping of off-target sites to positions of MRE11 binding using chromatin immunoprecipitation followed by sequencing. This technique, termed DISCOVER-Seq+, discovered up to fivefold more CRISPR off-target sites in immortalized cell lines, primary human cells and mice compared with previous methods. We demonstrate applicability to ex vivo knock-in of a cancer-directed transgenic T cell receptor in primary human T cells and in vivo adenovirus knock-out of cardiovascular risk genePCSK9in mice. Thus, DISCOVER-Seq+ is, to our knowledge, the most sensitive method to-date for discovering off-target genome editing in vivo.
more »
« less
- Award ID(s):
- 1933303
- PAR ID:
- 10405538
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Methods
- Volume:
- 20
- Issue:
- 5
- ISSN:
- 1548-7091
- Page Range / eLocation ID:
- p. 706-713
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract CRISPR gene editing offers unprecedented genomic and transcriptomic control for precise regulation of cell function and phenotype. However, delivering the necessary CRISPR components to therapeutically relevant cell types without cytotoxicity or unexpected side effects remains challenging. The RALA cell penetrating peptide is an amphiphilic peptide that self‐assembles into nanoparticles through electrostatic interactions with anionic molecules and delivers them across the cell membrane. Given the low cytotoxicity, versatility, and competitive transfection rates of RALA, we aimed to establish this peptide as a new CRISPR delivery system in a wide range of molecular formats across different editing modalities. We report that RALA effectively encapsulated and delivered CRISPR DNAs, RNAs, and ribonucleic proteins (RNPs) to primary mesenchymal stem cells (MSCs), outperforming commercially available reagents. We then used the RALA peptide for the knock‐in and knock‐out of reporter genes into primary MSCs and the transcriptional activation of therapeutically relevant genes. Finally, we demonstrate in vivo gene editing using RALA to knock‐out luciferase and GFP in a reporter mouse model. In summary, we establish RALA as a powerful tool for safer and more effective delivery of CRISPR machinery in multiple cargo formats for a wide range of ex vivo and in vivo gene editing strategies.more » « less
-
CRISPR/Cas technology is increasingly being used as a common methodology in many cancer biology studies due to the ease and convenience of the technique. Precise editing of genomic DNA has been achieved upon repair of CRISPR-induced DNA double-strand breaks (DSBs) by homologous recombination (HR). HR repairs DNA DSBs with high fidelity and therefore, deficiencies in HR result in genome instability. These deficiencies have been demonstrated in many cancers. RAD51-dependent HR is a very important pathway for repairing DSBs. Previous studies have shown that genome editing using CRISPR technology relies on the repair of site-specific DNA DSBs induced by the RNA-guided Cas9 endonuclease. Furthermore, previous studies have shown that the efficiency of CRISPR-mediated HR can be improved by the stimulation of HR promoting factors, such as the RAD51 recombinase. Despite the ease and efficient use the CRISPR/Cas technology for genome editing, one limitation is the potential occurrence of associated off-target effects. If CRISPR technology is planned to be used to target cancer cells with defective HR capabilities, will off-target mutations be likely to occur? In order to answer this question, a system was developed in Saccharomyces cerevisiae using green fluorescent protein (GFP) as a reporter to identify off-target CRISPR-induced DSBs. This study set out to test the number of off-target DSBs that could be introduced by CRISPR-induced genome editing in a RAD51-deficient HR model. We were curious whether loss of RAD51-dependent HR would increase the abundance of off-target CRISPR-induced DSBs in mutant yeast strains as compared to those with a functioning HR-dependent DNA repair pathway. Preliminary findings using this system will be presented.more » « less
-
Summary CRISPR‐Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we exploreFaecalibaculum rodentiumCas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5′‐NNTA‐3′ PAM, targeting more abundant palindromic TA sites in plant genomes than the 5′‐NGG‐3′ PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5′‐NNTA‐3′ PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR‐Cas9 system. FrCas9 induces high‐efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2‐FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2‐FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9‐derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C‐to‐T and A‐to‐G base edits in rice plants. Whole‐genome sequencing‐based off‐target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2‐FrCas9 in plants, however, causes detectable guide RNA‐independent off‐target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR‐FrCas9 system for targeted mutagenesis, large deletions, C‐to‐T base editing, and A‐to‐G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR‐FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.more » « less
-
Abstract Despite the revolutionary impacts of CRISPR-Cas gene editing systems, the effective and widespread use of CRISPR technologies in emerging model organisms still faces significant challenges. These include the inefficiency in generating heritable mutations at the organismal level, limited knowledge about the genomic consequences of gene editing, and an inadequate understanding of the inheritance patterns of CRISPR-Cas-induced mutations. This study addresses these issues by 1) developing an efficient microinjection delivery method for CRISPR editing in the microcrustaceanDaphnia pulex; 2) assessing the editing efficiency of Cas9 and Cas12a nucleases, examining mutation inheritance patterns, and analyzing the local and global mutation spectrum in thescarletmutants; and 3) investigating the transcriptomes ofscarletmutants to understand the pleiotropic effects ofscarletunderlying their swimming behavior changes. Our reengineered CRISPR microinjection method results in efficient biallelic editing with both nucleases. While indels are dominant in Cas-induced mutations, a few on-site large deletions (>1kb) are observed, most likely caused by microhomology-mediated end joining repair. Knock-in of a stop codon cassette to thescarletlocus was successful, despite complex induced mutations surrounding the target site. Moreover, extensive germline mosaicism exists in some mutants, which unexpectedly produce different phenotypes/genotypes in their asexual progenies. Lastly, our transcriptomic analyses unveil significant gene expression changes associated with scarlet knock-out and altered swimming behavior in mutants, including several genes (e.g., NMDA1, ABAT, CNTNAP2) involved in human neurodegenerative diseases. This study expands our understanding of the dynamics of gene editing in the tractable model organismDaphniaand highlights its promising potential as a neurological disease model.more » « less
An official website of the United States government
