skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Schatten Classes and Commutator in the Two Weight Setting, I. Hilbert Transform
Abstract We characterize the Hilbert–Schmidt class membership of commutator with the Hilbert transform in the two weight setting. The characterization depends upon the symbol of the commutator being in a new weighted Besov space. This follows from a Schatten classSpresult for dyadic paraproducts, where$$1< p < \infty $$ 1 < p < . We discuss the difficulties in extending the dyadic result to the full range of Schatten classes for the Hilbert transform.  more » « less
Award ID(s):
1949206
PAR ID:
10405653
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Potential Analysis
Volume:
60
Issue:
2
ISSN:
0926-2601
Format(s):
Medium: X Size: p. 875-894
Size(s):
p. 875-894
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Harmonic Hilbert spaces on locally compact abelian groups are reproducing kernel Hilbert spaces (RKHSs) of continuous functions constructed by Fourier transform of weighted$$L^2$$ L 2 spaces on the dual group. It is known that for suitably chosen subadditive weights, every such space is a Banach algebra with respect to pointwise multiplication of functions. In this paper, we study RKHSs associated with subconvolutive functions on the dual group. Sufficient conditions are established for these spaces to be symmetric Banach$$^*$$ -algebras with respect to pointwise multiplication and complex conjugation of functions (here referred to as RKHAs). In addition, we study aspects of the spectra and state spaces of RKHAs. Sufficient conditions are established for an RKHA on a compact abelian groupGto have the same spectrum as the$$C^*$$ C -algebra of continuous functions onG. We also consider one-parameter families of RKHSs associated with semigroups of self-adjoint Markov operators on$$L^2(G)$$ L 2 ( G ) , and show that in this setting subconvolutivity is a necessary and sufficient condition for these spaces to have RKHA structure. Finally, we establish embedding relationships between RKHAs and a class of Fourier–Wermer algebras that includes spaces of dominating mixed smoothness used in high-dimensional function approximation. 
    more » « less
  2. Abstract We prove that there are$$\gg \frac{X^{\frac{1}{3}}}{(\log X)^2}$$ X 1 3 ( log X ) 2 imaginary quadratic fieldskwith discriminant$$|d_k|\le X$$ | d k | X and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound$$\gg X^{\frac{1}{4}}$$ X 1 4 in the same setting. We use a method of Howe, Leprévost, and Poonen to construct a genus 2 curveCover$$\mathbb {Q}$$ Q such thatChas a rational Weierstrass point and the Jacobian ofChas a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curveCand a quantitative result of Kulkarni and the second author. 
    more » « less
  3. Abstract We establish weak-type (1, 1) bounds for the maximal function associated with ergodic averaging operators modeled on a wide class of thin deterministic setsB. As a corollary we obtain the corresponding pointwise convergence result on$$L^1$$ L 1 . This contributes yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991 asserting the failure of pointwise convergence on$$L^1$$ L 1 of ergodic averages along arithmetic sets with zero Banach density. The second main result is a multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund alongBon$$L^p$$ L p ,$$p>1$$ p > 1 , which is derived by establishing uniform oscillation estimates and certain vector-valued maximal estimates. 
    more » « less
  4. Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } , let$$\Sigma _g$$ Σ g denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ g < ; or the blooming Cantor tree, when$$g= \infty $$ g = . We construct a family$$\mathfrak B(H)$$ B ( H ) of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ Map ( Σ g ) whose elements preserve ablock decompositionof$$\Sigma _g$$ Σ g , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ B ( H ) surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ B ( H ) is of type$$F_n$$ F n if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } and every$$n\ge 1$$ n 1 , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ G < Map ( Σ g ) that is of type$$F_n$$ F n but not of type$$F_{n+1}$$ F n + 1 , and which contains the mapping class group of every compact surface of genus$$\le g$$ g and with non-empty boundary. 
    more » « less
  5. Abstract We define a type of modulus$$\operatorname {dMod}_p$$ dMod p for Lipschitz surfaces based on$$L^p$$ L p -integrable measurable differential forms, generalizing the vector modulus of Aikawa and Ohtsuka. We show that this modulus satisfies a homological duality theorem, where for Hölder conjugate exponents$$p, q \in (1, \infty )$$ p , q ( 1 , ) , every relative Lipschitzk-homology classchas a unique dual Lipschitz$$(n-k)$$ ( n - k ) -homology class$$c'$$ c such that$$\operatorname {dMod}_p^{1/p}(c) \operatorname {dMod}_q^{1/q}(c') = 1$$ dMod p 1 / p ( c ) dMod q 1 / q ( c ) = 1 and the Poincaré dual ofcmaps$$c'$$ c to 1. As$$\operatorname {dMod}_p$$ dMod p is larger than the classical surface modulus$$\operatorname {Mod}_p$$ Mod p , we immediately recover a more general version of the estimate$$\operatorname {Mod}_p^{1/p}(c) \operatorname {Mod}_q^{1/q}(c') \le 1$$ Mod p 1 / p ( c ) Mod q 1 / q ( c ) 1 , which appears in works by Freedman and He and by Lohvansuu. Our theory is formulated in the general setting of Lipschitz Riemannian manifolds, though our results appear new in the smooth setting as well. We also provide a characterization of closed and exact Sobolev forms on Lipschitz manifolds based on integration over Lipschitzk-chains. 
    more » « less