Abstract The rotation period of a star is an important quantity that provides insight into its structure and state. For stars with surface features like starspots, their periods can be inferred from brightness variations as these features move across the stellar surface. TESS, with its all-sky coverage, is providing the largest sample of stars for obtaining rotation periods. However, most of the periods have been limited to shorter than the 13.7 days TESS orbital period due to strong background signals (e.g., scattered light) on those timescales. In this study, we investigated the viability of measuring longer periods (>10 days) from TESS light curves for stars in the Northern Continuous Viewing Zone (NCVZ). We first created a reference set of 272 period measurements longer than 10 days for K and M dwarfs in the NCVZ using data from the Zwicky Transient Facility (ZTF) that we consider as the “ground truth” given ZTF’s long temporal baseline of 6+ years. We then used theunpopularpipeline to detrend TESS light curves and implemented a modified Lomb–Scargle (LS) periodogram that accounts for flux offsets between observing sectors. For 179 out of the 272 sources (66%), the TESS-derived periods match the ZTF-derived periods to within 10%. The match rate increases to 81% (137 out of 170) when restricting to sources with a TESS LS power that exceeds a threshold. Our results confirm the capability of measuring periods longer than 10 days from TESS data, highlighting the data set’s potential for studying slow rotators. 
                        more » 
                        « less   
                    
                            
                            Modulation of the Blazhko Cycle in LS Her
                        
                    
    
            Abstract We present analysis of the RR Lyrae star, LS Her, and confirm the previously reported modulation to its Blazhko cycles. We performed Fourier analysis on two sectors (Sector 24 and 25) of data from the Transiting Exoplanet Survey Satellite (TESS) spanning 53 days. We find LS Her to have a primary pulsation period of 0.2308 day and a Blazhko period of 12.7 days in keeping with previously reported results. We also identified sideband frequencies around the Blazhko multiplets suggesting the Blazhko cycle is modulated on a timescale of 112 days. Analysis of the Blazhko effect using the TESS data clearly shows a changing amplitude and phase throughout the four Blazhko cycles. We compared our modeled results, which were based on our TESS frequency analysis, to TESS data (Sector 51) taken ∼700 days later and found our modulation model was not a good representation of the data. We then coupled our TESS analysis with the modulation frequency results from Wils et al. and found excellent agreement with the Sector 51 data. To further test this result we obtained ground-based,V-magnitude observations of LS Her in the summer of 2022. This data also showed excellent agreement with our coupled modulation model. We have verified that LS Her is a Blazhko star with a modulated Blazhko period of 109 days, stability over the 862 days of observations, and possible stability lasting over 15 yr. We discuss the ramifications of the modulation for other Blazhko stars that show Blazhko effect changes over time. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10405656
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 165
- Issue:
- 5
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 194
- Size(s):
- Article No. 194
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT G 29 − 38 (TIC 422526868) is one of the brightest (V = 13.1) and closest (d = 17.51 pc) pulsating white dwarfs with a hydrogen-rich atmosphere (DAV/ZZ Ceti class). It was observed by the TESS spacecraft in sectors 42 and 56. The atmosphere of G 29 − 38 is polluted by heavy elements that are expected to sink out of visible layers on short time-scales. The photometric TESS data set spans ∼51 d in total, and from this, we identified 56 significant pulsation frequencies, that include rotational frequency multiplets. In addition, we identified 30 combination frequencies in each sector. The oscillation frequencies that we found are associated with g-mode pulsations, with periods spanning from ∼ 260 to ∼ 1400 s. We identified rotational frequency triplets with a mean separation δνℓ = 1 of 4.67 μHz and a quintuplet with a mean separation δνℓ = 2 of 6.67 μHz, from which we estimated a rotation period of about 1.35 ± 0.1 d. We determined a constant period spacing of 41.20 s for ℓ = 1 modes and 22.58 s for ℓ = 2 modes. We performed period-to-period fit analyses and found an asteroseismological model with M⋆/M⊙ = 0.632 ± 0.03, $$T_{\rm eff}=11\, 635\pm 178$$ K, and log g = 8.048 ± 0.005 (with a hydrogen envelope mass of MH ∼ 5.6 × 10−5M⋆), in good agreement with the values derived from spectroscopy. We obtained an asteroseismic distance of 17.54 pc, which is in excellent agreement with that provided by Gaia (17.51 pc).more » « less
- 
            Context. The collection of high-quality photometric data by space telescopes, such as the completed Kepler mission and the ongoing TESS program, is revolutionizing the area of white-dwarf asteroseismology. Among the different kinds of pulsating white dwarfs, there are those that have He-rich atmospheres, and they are called DBVs or V777 Her variable stars. The archetype of these pulsating white dwarfs, GD 358, is the focus of the present paper. Aims. We report a thorough asteroseismological analysis of the DBV star GD 358 (TIC 219074038) based on new high-precision photometric data gathered by the TESS space mission combined with data taken from the Earth. Methods. We reduced TESS observations of the DBV star GD 358 and performed a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models computed accounting for the complete prior evolution of their progenitors. We assessed the mass of this star by comparing the measured mean period separation with the theoretical averaged period spacings of the models, and we used the observed individual periods to look for a seismological stellar model. We detected potential frequency multiplets for GD 358, which we used to identify the harmonic degree ( ℓ ) of the pulsation modes and rotation period. Results. In total, we detected 26 periodicities from the TESS light curve of this DBV star using standard pre-whitening. The oscillation frequencies are associated with nonradial g (gravity)-mode pulsations with periods from ∼422 s to ∼1087 s. Moreover, we detected eight combination frequencies between ∼543 s and ∼295 s. We combined these data with a huge amount of observations from the ground. We found a constant period spacing of 39.25 ± 0.17 s, which helped us to infer its mass ( M ⋆ = 0.588 ± 0.024 M ⊙ ) and constrain the harmonic degree ℓ of the modes. We carried out a period-fit analysis on GD 358, and we were successful in finding an asteroseismological model with a stellar mass ( M ⋆ = 0.584 −0.019 +0.025 M ⊙ ), compatible with the stellar mass derived from the period spacing, and in line with the spectroscopic mass ( M ⋆ = 0.560 ± 0.028 M ⊙ ). In agreement with previous works, we found that the frequency splittings vary according to the radial order of the modes, suggesting differential rotation. Obtaining a seismological model made it possible to estimate the seismological distance ( d seis = 42.85 ± 0.73 pc) of GD 358, which is in very good accordance with the precise astrometric distance measured by Gaia EDR3 ( π = 23.244 ± 0.024, d Gaia = 43.02 ± 0.04 pc). Conclusions. The high-quality data measured with the TESS space telescope, used in combination with data taken from ground-based observatories, provides invaluable information for conducting asteroseismological studies of DBV stars, analogously to what happens with other types of pulsating white-dwarf stars. The currently operating TESS mission, together with the advent of other similar space missions and new stellar surveys, will give an unprecedented boost to white dwarf asteroseismology.more » « less
- 
            null (Ed.)Abstract We present the results from the first two years of the Planet Hunters TESS citizen science project, which identifies planet candidates in the TESS data by engaging members of the general public. Over 22,000 citizen scientists from around the world visually inspected the first 26 Sectors of TESS data in order to help identify transit-like signals. We use a clustering algorithm to combine these classifications into a ranked list of events for each sector, the top 500 of which are then visually vetted by the science team. We assess the detection efficiency of this methodology by comparing our results to the list of TESS Objects of Interest (TOIs) and show that we recover 85 % of the TOIs with radii greater than 4 ⊕ and 51 % of those with radii between 3 and 4 R⊕. Additionally, we present our 90 most promising planet candidates that had not previously been identified by other teams, 73 of which exhibit only a single transit event in the TESS light curve, and outline our efforts to follow these candidates up using ground-based observatories. Finally, we present noteworthy stellar systems that were identified through the Planet Hunters TESS project.more » « less
- 
            Abstract Based on radial velocities, EXORAP photometry, and activity indicators, the HArps-n red Dwarf Exoplanet Survey (HADES) team reported a 16.3 days rotation period for the M dwarf GJ 3942. However, an estimate of the magnitude-squared coherence between the HADES RV and Hαtime series has significant peaks at frequencies 1/16 day−1and 1/32 day−1. We turn to TESS photometry to test the hypothesis that the true rotation period is 32 days with 16 days harmonic. Although the average TESS periodogram has peaks at harmonics of 1/16 day−1, the harmonic sequence is not fully resolved according to the Rayleigh criterion. The TESS observations suggest a 1/16 day−1rotation frequency and a 1/32 day−1subharmonic, though resolution makes the TESS rotation detection ambiguous.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
