skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanism for Long Photocurrent Time Constants in α-Ga 2 O 3 UV Photodetectors
Deep centers and their influence on photocurrent spectra and transients were studied for interdigitated photoresistors on α -Ga 2 O 3 undoped semi-insulating films grown by Halide Vapor Phase Epitaxy (HVPE) on sapphire. Characterization involving current-voltage measurements in the dark and with monochromatic illumination with photons with energies from 1.35 eV to 4.9 eV, Thermally Stimulated Current (TSC), Photoinduced Current Transients Spectroscopy (PICTS) showed the Fermi level in the dark was pinned at E c −0.8 eV, with other prominent centers being deep acceptors with optical thresholds near 2.3 eV and 4.9 eV and deep traps with levels at E c −0.5 eV, E c −0.6 eV. Measurements of photocurrent transients produced by illumination with photon energies 2.3 eV and 4.9 eV and Electron Beam Induced Current (EBIC) imaging point to the high sensitivity and external quantum efficiency values being due to hole trapping enhancing the lifetime of electrons and inherently linked with the long photocurrent transients. The photocurrent transients are stretched exponents, indicating the strong contribution of the presence of centers with barriers for electron capture and/or of potential fluctuations.  more » « less
Award ID(s):
1856662
PAR ID:
10405661
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ECS Journal of Solid State Science and Technology
Volume:
12
Issue:
4
ISSN:
2162-8769
Page Range / eLocation ID:
045002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thick (23 µm) films of κ-Ga2O3 were grown by Halide Vapor Phase Epitaxy (HVPE) on GaN/sapphire templates at 630 °C. X-ray analysis confirmed the formation of single-phase κ-Ga2O3 with half-widths of the high-resolution x-ray diffraction (004), (006), and (008) symmetric reflections of 4.5 arc min and asymmetric (027) reflection of 14 arc min. Orthorhombic κ-Ga2O3 polymorph formation was confirmed from analysis of the Kikuchi diffraction pattern in electron backscattering diffraction. Secondary electron imaging indicated a reasonably flat surface morphology with a few (area density ∼103 cm−2) approximately circular (diameter ∼50–100 µm) uncoalesced regions, containing κ-Ga2O3 columns with in-plane dimensions and a height of about 10 µm. Micro-cathodoluminescence (MCL) spectra showed a wide 2–3.5 eV band that could be deconvoluted into narrower bands peaked at 2.59, 2.66, 2.86, and 3.12 eV. Ni Schottky diodes prepared on the films showed good rectification but a high series resistance. The films had a thin near-surface region dominated by Ec − 0.7 eV deep centers and a deeper region (∼2 µm from the surface) dominated by shallow donors with concentrations of ≤1016 cm−3. Photocurrent and photocapacitance spectra showed the presence of deep compensating acceptors with optical ionization energies of ∼1.35 and 2.3 eV, the latter being close to the energy of one of the MCL bands. Deep level transient spectroscopy revealed deep traps with energies near 0.3, 0.6, 0.7, 0.8, and 1 eV from the conduction band edge. The results show the potential of HVPE to grow very thick κ-Ga2O3 on GaN/sapphire templates. 
    more » « less
  2. We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated by deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system. 
    more » « less
  3. Two-inch diameter α -Ga 2 O 3 films with thickness ∼4 μ m were grown on basal plane sapphire by Halide Vapor Phase Epitaxy (HVPE) and doped with Sn in the top ∼1 μ m from the surface. These films were characterized with High-Resolution X-ray Diffraction (HRXRD), Scanning Electron Microscope (SEM) imaging in the Secondary Electron (SE) and Micro-cathodoluminescence (MCL) modes, contactless sheet resistivity mapping, capacitance-voltage, current-voltage, admittance spectra, and Deep Level Transient Spectroscopy (DLTS) measurements. The edge and screw dislocations densities estimated from HRXRD data were respectively 7.4 × 10 9 cm −2 and 1.5 × 10 7 cm −2 , while the films had a smooth surface with a low density (∼10 3 cm −2 ) of circular openings with diameters between 10 and 100 μ m. The sheet resistivity of the films varied over the entire 2-inch diameter from 200 to 500 Ω square −1 . The net donor concentration was ∼10 18 cm −3 near the surface and increased to ∼4 × 10 18 cm −3 deeper inside the sample. The deep traps observed in admittance and DLTS spectra had levels at E c −0.25 eV and E c −0.35 eV, with concentration ∼10 15 cm −3 and E c −1 eV with concentration ∼10 16 cm −3 . 
    more » « less
  4. Abstract The presence of in-plane chiral effects, hence spin–orbit coupling, is evident in the changes in the photocurrent produced in a TiS 3 (001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin–orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiS 3 is n-type and has an electron mobility in the range of 1–6 cm 2 V −1 s −1 . I – V measurements under laser illumination indicate the photocurrent exhibits a bias directionality dependence, reminiscent of bipolar spin diode behavior. Because the TiS 3 contains no heavy elements, the presence of spin–orbit coupling must be attributed to the observed loss of inversion symmetry at the TiS 3 (001) surface. 
    more » « less
  5. Films of α-Ga 2 O 3 grown by Halide Vapor Phase Epitaxy (HVPE) were irradiated with protons at energies of 330, 400, and 460 keV with fluences 6 × 10 15  cm −2 and with 7 MeV C 4+ ions with a fluence of 1.3 × 10 13  cm −2 and characterized by a suite of measurements, including Photoinduced Transient Current Spectroscopy (PICTS), Thermally Stimulated Current (TSC), Microcathodoluminescence (MCL), Capacitance–frequency (C–f), photocapacitance and Admittance Spectroscopy (AS), as well as by Positron Annihilation Spectroscopy (PAS). Proton irradiation creates a conducting layer near the peak of the ion distribution and vacancy defects distribution and introduces deep traps at E c -0.25, 0.8, and 1.4 eV associated with Ga interstitials, gallium–oxygen divacancies V Ga –V O , and oxygen vacancies V O . Similar defects were observed in C implanted samples. The PAS results can also be interpreted by assuming that the observed changes are due to the introduction of V Ga and V Ga –V O . 
    more » « less