The concept and feasibility of producing liposomes by rehydrating engineered lipid nanoconstructs are demonstrated in this study. Nanoconstructs of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were produced using a microfluidic delivery probe integrated with an atomic force microscope. The subsequent rehydration of these POPC constructs led to the formation of liposomes, most of which remained adhered to the surface. The size (e.g., diameter) of the liposomes could be tuned by varying the lateral dimension of the lipid constructs. Hierarchical liposomal structures, such as pentagons containing five liposomes at the corners, could also be designed and produced by depositing lipid constructs to designated locations on the surfaces, followed by rehydration. This new means allows for regulating liposomal sizes, distributions, and compositions. The outcomes benefit applications of liposomes as delivery vehicles, sensors, and building blocks in biomaterials design. The ability to produce hierarchical liposomal structures benefits numerous applications such as proto-cell development, multiplexed bio-composite materials, and the engineering of local bio-environments.
more »
« less
Liposome Formulation for Tumor-Targeted Drug Delivery Using Radiation Therapy
Targeted delivery of drugs or other therapeutic agents through internal or external triggers has been used to control and accelerate the release from liposomal carriers in a number of studies, but relatively few utilize energy of therapeutic X-rays as a trigger. We have synthesized liposomes that are triggered by ionizing radiation (RTLs) to release their therapeutic payload. These liposomes are composed of natural egg phosphatidylethanolamine (PE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-disteroyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG-2000), and the mean size of the RTL was in the range of 114 to 133 nm, as measured by nanoparticle tracking analysis (NTA). The trigger mechanism is the organic halogen, chloral hydrate, which is known to generate free protons upon exposure to ionizing radiation. Once protons are liberated, a drop in internal pH of the liposome promotes destabilization of the lipid bilayer and escape of the liposomal contents. In proof of principle studies, we assessed RTL radiation-release of fluorescent tracers upon exposure to a low pH extracellular environment or exposure to X-ray irradiation. Biodistribution imaging before and after irradiation demonstrated a preferential uptake and release of the liposomes and their cargo at the site of local tumor irradiation. Finally, a potent metabolite of the commonly used chemotherapy irinotecan, SN-38, was loaded into RTL along with near infrared (NIR) fluorescent dyes for imaging studies and measuring tumor cell cytotoxicity alone or combined with radiation exposure, in vitro and in vivo. Fully loaded RTLs were found to increase tumor cell killing with radiation in vitro and enhance tumor growth delay in vivo after three IV injections combined with three, 5 Gy local tumor radiation exposures compared to either treatment modality alone.
more »
« less
- Award ID(s):
- 1554166
- PAR ID:
- 10405666
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 23
- Issue:
- 19
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 11662
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Presented herein is the first report on dipolar Janus liposomes–liposomes that contain opposite surface charges decorating the two hemispheres of the same colloidal body. Such heterogeneous organization of surface charge is achieved through cholesterol-modulated lipid phase separation, which sorts anionic/cationic lipids into coexisting liquid-ordered/liquid-disordered domains. We present optimized experimental conditions to produce these liposomes in high yields, based on the gel-assisted hydration of ternary lipid systems consisting of cholesterol, 1,2-dipalmitoyl- sn-glycero -3-phosphocholine, and 1,2-dioleoyl- sn-glycero -3-phosphocholine. The size/charge distribution and domain configuration of these liposomes are characterized in detail by confocal fluorescence microscopy, nanosphere binding and zeta potential measurements. Using confocal fluorescence microscopy, we also follow the electrokinetic motion as well as the electrostatic self-assembly of these new dipolar Janus particles.more » « less
-
Sphingomyelin is a cell membrane sphingolipid that is upregulated in synovial sarcoma (SS). Jaspine B has been shown to inhibit sphingomyelin synthase, which synthesizes sphingomyelin from ceramide, a critical signal transducer; however, jaspine B’s low bioavailability limits its application as a promising treatment option. To address this shortcoming, we used microfluidics to develop a liposomal delivery system with increased anticancer efficacy. The nano-liposome size was determined by transmission electron microscopy. The jaspine B liposome was tested for its tumor inhibitory efficacy compared to plain jaspine B in in vitro and in vivo studies. The human SS cell line was tested for cell viability using varying jaspine B concentrations. In a mouse model of SS, tumor growth suppression was evaluated during four weeks of treatment (3 times/week). The results show that jaspine B was successfully formulated in the liposomes with a size ranging from 127.5 ± 61.2 nm. The MTT assay and animal study results indicate that jaspine B liposomes dose-dependently lowers cell viability in the SS cell line and effectively suppresses tumor cell growth in the SS animal model. The novel liposome drug delivery system addresses jaspine B’s low bioavailability issues and improves its therapeutic efficacy.more » « less
-
Liposomes are spherical-shaped vesicles that enclose an aqueous milieu surrounded by bilayer or multilayer membranes formed by self-assembly of lipid molecules. They are intensively exploited as either model membranes for fundamental studies or as vehicles for delivery of active substances in vivo and in vitro. Irrespective of the method adopted for production of loaded liposomes, obtaining the final purified product is often achieved by employing multiple, time consuming steps. To alleviate this problem, we propose a simplified approach for concomitant production and purification of loaded liposomes by exploiting the Electrodialysis-Driven Depletion of charged molecules from solutions. Our investigations show that electrically-driven migration of charged detergent and dye molecules from solutions that include natural or synthetic lipid mixtures leads to rapid self-assembly of loaded, purified liposomes, as inferred from microscopy and fluorescence spectroscopy assessments. In addition, the same procedure was successfully applied for incorporating PEGylated lipids into the membranes for the purpose of enabling long-circulation times needed for potential in vivo applications. Dynamic Light Scattering analyses and comparison of electrically-formed liposomes with liposomes produced by sonication or extrusion suggest potential use for numerous in vitro and in vivo applications.more » « less
-
The wide-scale use of liposomal delivery systems is challenged by difficulties in obtaining potent liposomal suspensions. Passive and active loading strategies have been proposed to formulate drug encapsulated liposomes but are limited by low efficiencies (passive) or high drug specificities (active). Here, we present an efficient and universal loading strategy for synthesizing therapeutic liposomes. Integrating a thermal equilibration technique with our unique liposome synthesis approach, co-loaded targeting nanovesicles can be engineered in a scalable manner with potencies 200-fold higher than typical passive encapsulation techniques. We demonstrate this capability through simultaneous co-loading of hydrophilic and hydrophobic small molecules and targeted delivery of liposomal Doxorubicin to metastatic breast cancer cell line MDA-MB-231. Molecular dynamic simulations are used to explain interactions between Doxorubicin and liposome membrane during thermal equilibration. By addressing the existing challenges, we have developed an unparalleled approach that will facilitate the formulation of novel theranostic and pharmaceutical strategies.more » « less
An official website of the United States government

