skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of Drosophila attP40 background on the glomerular organization of Or47b olfactory receptor neurons
Abstract Bacteriophage integrase-directed insertion of transgenic constructs into specific genomic loci has been widely used by Drosophila community. The attP40 landing site located on the second chromosome gained popularity because of its high inducible transgene expression levels. Here, unexpectedly, we found that homozygous attP40 chromosome disrupts normal glomerular organization of Or47b olfactory receptor neuron (ORN) class in Drosophila. This effect is not likely to be caused by the loss of function of Msp300, where the attP40 docking site is inserted. Moreover, the attP40 background seems to genetically interact with the second chromosome Or47b-GAL4 driver, which results in a similar glomerular defect. Whether the ORN phenotype is caused by the neighbouring genes around Msp300 locus in the presence of attP40-based insertions or a second unknown mutation in the attP40 background remains elusive. Our findings tell a cautionary tale about using this popular transgenic landing site, highlighting the importance of rigorous controls to rule out the attP40 landing site-associated background effects.  more » « less
Award ID(s):
2006471
PAR ID:
10405689
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Gavis, E
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Over the past decades, many critical molecular players have been uncovered to control distinct steps in olfactory circuit assembly in Drosophila. Among these, multi-member gene families of cell surface proteins are of interest because they can act as neuron-specific identification/recognition tags in combinations and contribute to circuit assembly in complex brains through their heterophilic or homophilic interactions. Recently, a multi-protein interactome has been described between the Beat and Side families of IgSF proteins. Here, we use the publicly available single-cell RNA-seq datasets and newly generated gene trap transgenic driver lines to probe thein vivospatial expression pattern of thebeat/sidegene families in odorant receptor neurons (ORNs) and their synaptic target projection neurons (PNs).Our results revealed that each ORN and its synaptic target PN class expresses a class-specific combination ofbeat/sidegenes, hierarchically regulated by lineage-specific genetic programs. Though ORNs or PNs from closer lineages tend to possess more similarbeat/sideprofiles, we also found many examples of divergence from this pattern among closely related ORNs and closely related PNs. To explore whether the class-specific combination ofbeats/sidesdefines ORN-PN matching specificity, we perturbed presynapticbeat-IIaand postsynapticside-IVin two ORN-PN partners. However, disruption of Beat-IIa-Side-IV interaction did not produce any significant mistargeting in these two examined glomeruli. Though without affecting general glomerular targeting, knockdown ofsidein ORNs leads to the reduction of synaptic development. Interestingly, we found conserved expression patterns ofbeat/sideorthologs across ORNs in ants and mosquitoes, indicating the shared regulatory strategies specifying the expression of these duplicated paralogs in insect evolution. Overall, this comprehensive analysis of expression patterns lays a foundation for in-depth functional investigations into how Beat/Side combinatorial expression contributes to olfactory circuit assembly. 
    more » « less
  2. Standard zebrafish transgenesis involves random transgene integration with resource-intensive screening. While phiC31 integrase–basedattP/attBrecombination has streamlined transgenesis in mice andDrosophila, validatedattP-based landing sites for universal applications are lacking in zebrafish. Here, we developedphiC31 Integrase Genomic Loci Engineered for Transgenesis(pIGLET) as transgenesis approach, with twoattPlanding sitespIGLET14aandpIGLET24bfrom well-validated Tol2 transgenes. Both sites facilitate diverse transgenesis applications including reporters and Cre/loxPtransgenes. ThepIGLET14aandpIGLET24blanding sites consistently yield 25 to 50% germline transmission, substantially reducing the resources needed for transgenic line generation. Transgenesis into these sites enables reproducible expression patterns in F0 zebrafish embryos for enhancer discovery and testing of gene regulatory variants. Together, our new landing sites streamline targeted, reproducible zebrafish transgenesis as a robust platform for various applications while minimizing the workload for generating transgenic lines. 
    more » « less
  3. Presgraves, D (Ed.)
    Abstract Wolbachia are maternally transmitted, intracellular bacteria that can often selfishly spread through arthropod populations via cytoplasmic incompatibility (CI). CI manifests as embryonic death when males expressing prophage WO genes cifA and cifB mate with uninfected females or females harboring an incompatible Wolbachia strain. Females with a compatible cifA-expressing strain rescue CI. Thus, cif-mediated CI confers a relative fitness advantage to females transmitting Wolbachia. However, whether cif sequence variation underpins incompatibilities between Wolbachia strains and variation in CI penetrance remains unknown. Here, we engineer Drosophila melanogaster to transgenically express cognate and non-cognate cif homologs and assess their CI and rescue capability. Cognate expression revealed that cifA;B native to D. melanogaster causes strong CI, and cognate cifA;B homologs from two other Drosophila-associated Wolbachia cause weak transgenic CI, including the first demonstration of phylogenetic type 2 cifA;B CI. Intriguingly, non-cognate expression of cifA and cifB alleles from different strains revealed that cifA homologs generally contribute to strong transgenic CI and interchangeable rescue despite their evolutionary divergence, and cifB genetic divergence contributes to weak or no transgenic CI. Finally, we find that a type 1 cifA can rescue CI caused by a genetically divergent type 2 cifA;B in a manner consistent with unidirectional incompatibility. By genetically dissecting individual CI functions for type 1 and 2 cifA and cifB, this work illuminates new relationships between cif genotype and CI phenotype. We discuss the relevance of these findings to CI’s genetic basis, phenotypic variation patterns, and mechanism. 
    more » « less
  4. Abstract Flow cytometry estimates of genome sizes among species of Drosophila show a 3-fold variation, ranging from ∼127 Mb in Drosophila mercatorum to ∼400 Mb in Drosophila cyrtoloma. However, the assembled portion of the Muller F element (orthologous to the fourth chromosome in Drosophila melanogaster) shows a nearly 14-fold variation in size, ranging from ∼1.3 Mb to >18 Mb. Here, we present chromosome-level long-read genome assemblies for 4 Drosophila species with expanded F elements ranging in size from 2.3 to 20.5 Mb. Each Muller element is present as a single scaffold in each assembly. These assemblies will enable new insights into the evolutionary causes and consequences of chromosome size expansion. 
    more » « less
  5. Abstract Most real-world behaviors – such as odor-guided locomotion - are performed with incomplete information. Activity in olfactory receptor neuron (ORN) classes provides information about odor identity but not the location of its source. In this study, we investigate the sensorimotor transformation that relates ORN activation to locomotion changes inDrosophilaby optogenetically activating different combinations of ORN classes and measuring the resulting changes in locomotion. Three features describe this sensorimotor transformation: First, locomotion depends on both the instantaneous firing frequency (f) and its change (df); the two together serve as a short-term memory that allows the fly to adapt its motor program to sensory context automatically. Second, the mapping between (f, df) and locomotor parameters such as speed or curvature is distinct for each pattern of activated ORNs. Finally, the sensorimotor mapping changes with time after odor exposure, allowing information integration over a longer timescale. 
    more » « less