skip to main content


Title: Assessing Engineering Sketching Skills on Object Assembly Tasks
Sketching is a valuable skill in engineering for representing information, developing design ideas, and communicating technical and abstract information. It is an important means of developing spatial abilities which are predictive of success in STEM fields. While existing spatial ability tests are predictive of engineering visualization skills, they do not allow students to develop drawing skills through spatial exercises. The Object Assembly Sketching test examines sketching skills with object assembly tasks using mental imagery and mental rotation. This study focuses on the development and pilot testing of a new sketching skills test using object assembly exercises. We piloted the test in two sections of an undergraduate mechanical engineering design course. Inter-rater reliability of two raters scoring students sketches on eight criteria was acceptable across exercises, but low across criteria. Students scored highest on Representation Accuracy, Scale, and Symmetry, and exhibited complex understanding of perspective sketching. We intend to revise the rubric to score for aesthetics and make instructions more precise.  more » « less
Award ID(s):
2013612
NSF-PAR ID:
10405698
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sketching is a valuable skill in engineering for representing information, developing design ideas, and communicating technical and abstract information. It is an important means of developing spatial abilities which are predictive of success in STEM fields. While existing spatial ability tests are predictive of engineering visualization skills, they do not allow students to develop drawing skills through spatial exercises. The Object Assembly Sketching test examines sketching skills with object assembly tasks using mental imagery and mental rotation. This study focuses on the development and pilot testing of a new sketching skills test using object assembly exercises. We piloted the test in two sections of an undergraduate mechanical engineering design course. Inter-rater reliability of two raters scoring students sketches on eight criteria was acceptable across exercises, but low across criteria. Students scored highest on Representation Accuracy, Scale, and Symmetry, and exhibited complex understanding of perspective sketching. We intend to revise the rubric to score for aesthetics and make instructions more precise. 
    more » « less
  2. This Research Work-In-Progress reports the implementation of an Object Assembly Test for sketching skills in an undergraduate mechanical engineering graphics course. Sketching is essential for generating and refining ideas, and for communication among team members. Design thinking is supported through sketching as a means of translating between internal and external representations, and creating shared representations of collaborative thinking. While many spatial tests exist in engineering education, these tests have not directly used sketching or tested sketching skill. The Object Assembly Test is used to evaluate sketching skills on 3-dimensional mental imagery and mental rotation tasks in 1- and 2-point perspective. We describe revisions to the Object Assembly Test skills and grading rubric since its pilot test, and implement the test in an undergraduate mechanical engineering course for further validation. We summarize inter-rater reliability for each sketching exercise and for each grading metric for a sample of sketches, with discussion of score use and interpretation. 
    more » « less
  3. This Research Work-In-Progress reports the implementation of an Object Assembly Test for sketching skills in an undergraduate mechanical engineering graphics course. Sketching is essential for generating and refining ideas, and for communication among team members. Design thinking is supported through sketching as a means of translating between internal and external representations, and creating shared representations of collaborative thinking. While many spatial tests exist in engineering education, these tests have not directly used sketching or tested sketching skill. The Object Assembly Test is used to evaluate sketching skills on 3-dimensional mental imagery and mental rotation tasks in 1- and 2-point perspective. We describe revisions to the Object Assembly Test skills and grading rubric since its pilot test, and implement the test in an undergraduate mechanical engineering course for further validation. We summarize inter-rater reliability for each sketching exercise and for each grading metric for a sample of sketches, with discussion of score use and interpretation. 
    more » « less
  4. The current study examined the neural correlates of spatial rotation in eight engineering undergraduates. Mastering engineering graphics requires students to mentally visualize in 3D and mentally rotate parts when developing 2D drawings. Students’ spatial rotation skills play a significant role in learning and mastering engineering graphics. Traditionally, the assessment of students’ spatial skills involves no measurements of neural activity during student performance of spatial rotation tasks. We used electroencephalography (EEG) to record neural activity while students performed the Revised Purdue Spatial Visualization Test: Visualization of Rotations (Revised PSVT:R). The two main objectives were to 1) determine whether high versus low performers on the Revised PSVT:R show differences in EEG oscillations and 2) identify EEG oscillatory frequency bands sensitive to item difficulty on the Revised PSVT:R.  Overall performance on the Revised PSVT:R determined whether participants were considered high or low performers: students scoring 90% or higher were considered high performers (5 students), whereas students scoring under 90% were considered low performers (3 students). Time-frequency analysis of the EEG data quantified power in several oscillatory frequency bands (alpha, beta, theta, gamma, delta) for comparison between low and high performers, as well as between difficulty levels of the spatial rotation problems.   Although we did not find any significant effects of performance type (high, low) on EEG power, we observed a trend in reduced absolute delta and gamma power for hard problems relative to easier problems. Decreases in delta power have been reported elsewhere for difficult relative to easy arithmetic calculations, and attributed to greater external attention (e.g., attention to the stimuli/numbers), and consequently, reduced internal attention (e.g., mentally performing the calculation). In the current task, a total of three spatial objects are presented. An example rotation stimulus is presented, showing a spatial object before and after rotation. A target stimulus, or spatial object before rotation is then displayed. Students must choose one of five stimuli (multiple choice options) that indicates the correct representation of the object after rotation. Reduced delta power in the current task implies that students showed greater attention to the example and target stimuli for the hard problem, relative to the moderate and easy problems. Therefore, preliminary findings suggest that students are less efficient at encoding the target stimuli (external attention) prior to mental rotation (internal attention) when task difficulty increases.  Our findings indicate that delta power may be used to identify spatial rotation items that are especially challenging for students. We may then determine the efficacy of spatial rotation interventions among engineering education students, using delta power as an index for increases in internal attention (e.g., increased delta power). Further, in future work, we will also use eye-tracking to assess whether our intervention decreases eye fixation (e.g., time spent viewing) toward the target stimulus on the Revised PSVT:R. By simultaneously using EEG and eye-tracking, we may identify changes in internal attention and encoding of the target stimuli that are predictive of improvements in spatial rotation skills among engineering education students.  
    more » « less
  5. null (Ed.)
    Mobile devices are becoming a more common part of the education experience. Students can access their devices at any time to perform assignments or review material. Mobile apps can have the added advantage of being able to automatically grade student work and provide instantaneous feedback. However, numerous challenges remain in implementing effective mobile educational apps. One challenge is the small screen size of smartphones, which was a concern for a spatial visualization training app where students sketch isometric and orthographic drawings. This app was originally developed for iPads, but the wide prevalence of smartphones led to porting the software to iPhone and Android phones. The sketching assignments on a smartphone screen required more frequent zooming and panning, and one of the hypotheses of this study was that the educational effectiveness on smartphones was the same as on the larger screen sizes using iPad tablets. The spatial visualization mobile sketching app was implemented in a college freshman engineering graphics course to teach students how to sketch orthographic and isometric assignments. The app provides automatic grading and hint feedback to help students when they are stuck. Students in this pilot were assigned sketching problems as homework using their personal devices. Students were administered a pre- and post- spatial visualization test (PSVT-R, a reliable, well-validated instrument) to assess learning gains. The trial analysis focuses on students who entered the course with limited spatial visualization experience as identified based on a score of ≤70% on the PSVT:R since students entering college with low PSVT:R scores are at higher risk of dropping out of STEM majors. Among these low-performing students, those who used the app showed significant progress: (71%) raised their test scores above 70% bringing them out of the at-risk range for dropping out of engineering. While the PSVT:R test has been well validated, there are benefits to developing alternative methods of assessing spatial visualization skills. We developed an assembly pre- and post- test based upon a timed Lego™ exercise. At the start of the quarter, students were timed to see how long it would take them to build small lego sets using only visual instructions. Students were timed again on a different lego set after completion of the spatial visualization app. One benefit of the test was that it illustrated to the engineering students a skill that could be perceived as more relevant to their careers, and thus possibly increased their motivation for spatial visualization training. In addition, it may be possible to adapt the assembly test to elementary school grade levels where the PSVT:R test would not be suitable. Preliminary results show that the average lego build times decreased significantly after using the mobile app, indicating an improvement in students’ spatial reasoning skills. A comparison will also be done between normalized completion times on the assembly test and the PSVT:R tests in order to see how the assembly test compares to the “gold standard”. In addition to the PSVT-R instrument, a survey was conducted to evaluate student usage and their impressions of the app. Students found the app engaging, easy to use, and something they would do whenever they had “a free moment”. 95% of the students recommended the app to a friend if they are struggling with spatial visualization skills. This paper will describe the implementation of the mobile spatial visualization sketching app in a large college classroom, and highlight the app’s impact in increasing self-efficacy in spatial visualization and sketching 
    more » « less