skip to main content


Title: Two-dimensional infrared-Raman spectroscopy as a probe of water’s tetrahedrality
Abstract

Two-dimensional spectroscopic techniques combining terahertz (THz), infrared (IR), and visible pulses offer a wealth of information about coupling among vibrational modes in molecular liquids, thus providing a promising probe of their local structure. However, the capabilities of these spectroscopies are still largely unexplored due to experimental limitations and inherently weak nonlinear signals. Here, through a combination of equilibrium-nonequilibrium molecular dynamics (MD) and a tailored spectrum decomposition scheme, we identify a relationship between the tetrahedral order of liquid water and its two-dimensional IR-IR-Raman (IIR) spectrum. The structure-spectrum relationship can explain the temperature dependence of the spectral features corresponding to the anharmonic coupling between low-frequency intermolecular and high-frequency intramolecular vibrational modes of water. In light of these results, we propose new experiments and discuss the implications for the study of tetrahedrality of liquid water.

 
more » « less
NSF-PAR ID:
10405814
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We simulate vibrational strong coupling (VSC) and vibrational ultrastrong coupling (V-USC) for liquid water with classical molecular dynamics simulations. When the cavity modes are resonantly coupled to the O−H stretch mode of liquid water, the infrared spectrum shows asymmetric Rabi splitting. The lower polariton (LP) may be suppressed or enhanced relative to the upper polariton (UP) depending on the frequency of the cavity mode. Moreover, although the static properties and the translational diffusion of water are not changed under VSC or V-USC, we do find the modification of the orientational autocorrelation function of H2O molecules especially under V-USC, which could play a role in ground-state chemistry.

     
    more » « less
  2. The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+and Eigen H9O4+ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.

     
    more » « less
  3. Two-dimensional infrared (2D IR) spectroscopy, infrared pump–infrared probe spectroscopy, and density functional theory calculations were used to study vibrational relaxation by ring and carbonyl stretching modes in a series of methylated xanthine derivatives in acetonitrile and deuterium oxide (heavy water). Isotropic signals from the excited symmetric and asymmetric carbonyl stretch modes decay biexponentially in both solvents. Coherent energy transfer between the symmetric and asymmetric carbonyl stretching modes gives rise to a quantum beat in the time-dependent anisotropy signals. The damping time of the coherent oscillation agrees with the fast decay component of the carbonyl bleach recovery signals, indicating that this time constant reflects intramolecular vibrational redistribution (IVR) to other solute modes. Despite their similar frequencies, the excited ring modes decay monoexponentially with a time constant that matches the slow decay component of the carbonyl modes. The slow decay times, which are faster in heavy water than in acetonitrile, approximately match the ones observed in previous UV pump–IR probe measurements on the same compounds. The slow component is assigned to intermolecular energy transfer to solvent bath modes from low-frequency solute modes, which are populated by IVR and are anharmonically coupled to the carbonyl and ring stretch modes. 2D IR measurements indicate that the carbonyl stretching modes are weakly coupled to the delocalized ring modes, resulting in slow exchange that cannot explain the common solvent-dependence. IVR is suggested to occur at different rates for the carbonyl vs ring modes due to differences in mode-specific couplings and not to differences in the density of accessible states.

     
    more » « less
  4. Decoding the structural information contained in the interfacial vibrational spectrum of water requires understanding how the spectral signatures of individual water molecules respond to their local hydrogen bonding environments. In this study, we isolated the contributions for the five classes of sites that differ according to the number of donor (D) and acceptor (A) hydrogen bonds that characterize each site. These patterns were measured by exploiting the unique properties of the water cluster cage structures formed in the gas phase upon hydration of a series of cations M+·(H2O)n (M = Li, Na, Cs, NH4, CH3NH3, H3O, and n = 5, 20–22). This selection of ions was chosen to systematically express the A, AD, AAD, ADD, and AADD hydrogen bonding motifs. The spectral signatures of each site were measured using two-color, IR–IR isotopomer-selective photofragmentation vibrational spectroscopy of the cryogenically cooled, mass selected cluster ions in which a single intact H2O is introduced without isotopic scrambling, an important advantage afforded by the cluster regime. The resulting patterns provide an unprecedented picture of the intrinsic line shapes and spectral complexities associated with excitation of the individual OH groups, as well as the correlation between the frequencies of the two OH groups on the same water molecule, as a function of network site. The properties of the surrounding water network that govern this frequency map are evaluated by dissecting electronic structure calculations that explore how changes in the nearby network structures, both within and beyond the first hydration shell, affect the local frequency of an OH oscillator. The qualitative trends are recovered with a simple model that correlates the OH frequency with the network-modulated local electron density in the center of the OH bond. 
    more » « less
  5. null (Ed.)
    We describe a novel variant of the driven molecular dynamics (DMD) method derived for probing Raman active vibrations. The method is an extension of the conventional alpha-DMD formulation for simulating IR activity by means of coupling an oscillating electric field to the molecule’s dipole moment, miu, and inducing absorption of energy via tuning the field to a resonant frequency. In the present work, we modify the above prescription to invoke Raman activity by coupling two electric fields, i.e., a “Pump” photon of frequency wP and a Stokes photon of frequency wS to the molecule’s polarizability tensor, alpha, with the difference in the frequencies of the two photons w = wP - wS corresponding to the Stokes Raman shift. If a particular w is close to a Raman active vibrational frequency, energy absorption by the molecule ensues. Varying w over the desired frequency range allows identifying and assigning all Raman active vibrational modes, including anharmonic corrections, in the range by means of trajectory analysis. We show that only one element of the full polarizability tensor, and its nuclear derivative, is needed for an alpha-DMD trajectory, making this method well suited for ab initio dynamics implementation. Numerical results using first-principles calculations are presented and discussed for the vibrational fundamentals, combination bands, overtones of H2O, CH4, and the C20 fullerene. 
    more » « less