skip to main content


Title: Observation of a rapid lake‐drainage event in the Arctic: Set‐up and trigger mechanisms, outburst flood behaviour, and broader fluvial impacts
Abstract

Lakes set in arctic permafrost landscapes can be susceptible to rapid drainage and downstream flood generation. Of many thousands of lakes in northern Alaska, hundreds have been identified as having high drainage potential directly to river systems and 18 such drainage events have been documented since 1955. In 2018 we began monitoring a large lake with high drainage potential as part of a long‐term hydrological observation network designed to evaluate impacts of land use and climate change. In early June 2022, surface water was observed flowing over a 30‐m wide bluff, with active headward erosion of ice‐rich permafrost soils apparent by late June. This overflow point breached rapidly in early July, draining almost the entire lake within 12 h and generating a 191 m3/s flood to a downstream creek. Water level and turbidity sensors and time‐lapse cameras captured this rapid lake‐drainage event at high resolution. A wind‐driven surface seiche and warming waters following ice‐out helped trigger the initial thermomechanical breach. We estimate at least 600 MT of lake sediment was eroded, mobilized, and transported downstream. A flood wave peaking at 42 m3/s arrived 14 h after the initial breach at a river gauge 9‐km downstream. Comparing this event with three other quantified arctic lake‐drainage floods suggests that lake surface area coupled with drainage gradient height can predict outburst flood magnitude. Using this relationship we estimated future flood hazards from the 146 lakes in the Arctic Coastal Plain of northern Alaska (ACP) with high drainage potential, of which 20% are expected to generate outburst floods exceeding 100 m3/s to downstream rivers. This fortunate and detailed drainage‐event observation adds to a growing body of research on the impact of lakes on arctic hydrology, hazard forecasting in a region with an increasing human footprint, and broader processes of landscape evolution in arctic lowlands.

 
more » « less
Award ID(s):
1806213
NSF-PAR ID:
10419275
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
48
Issue:
8
ISSN:
0197-9337
Page Range / eLocation ID:
p. 1615-1629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the mid-ninth century, an earthquake triggered a landslide that blocked the narrow gorge of the Jhelum River where it exits the Kashmir Valley. The landslide impounded a lake that extended ≈100 km along the floor of the valley, implying an impounded volume of ≤21 km 3 , flooding the capital, Srinagar, and much agricultural land. An engineered breach of the landslide was contrived by a Medieval engineer resulting in the catastrophic release of flood waters. Using reasonable assumptions we calculate the probable minimum drainage time of this Medieval flood (<4 days) and maximum downstream surge velocities (≈12 m/s). These would have been sufficient to transport boulders in the bed of the Jhelum with dimensions of ≈6 m, consistent with those currently present in some reaches of the river. Given the morphology of the Jhelum gorge we consider that landslide outburst floods may have been common in Kashmir’s history. Ancient shorelines indicate that paleo-lake volumes in the Kashmir Valley may have exceeded 400 km 3 which, were they released in catastrophic floods, would have been associated with potential downstream outburst velocities >32 m/s, able to transport boulders with dimensions ≈40 m, far in excess of any found in the course of the Jhelum or in the Punjab plains. Their absence suggests that Kashmir’s ancient lakes were not lowered by outburst mechanisms much exceeding those associated with Suyya’s flood. Present-day floods have been many tens of meters shallower than those impounded by landslides in the Jhelum in the past several thousands of years. A challenge for future study will be to date Kashmir’s ancient shorelines to learn how often landslides and major impoundment events may have occurred in the valley. 
    more » « less
  2. Assessment of lakes for their future potential to drain relied on the 2002/03 airborne Interferometric Synthetic Aperture Radar (IFSAR) Digital Surface Model (DSM) data for the western Arctic Coastal Plain in northern Alaska. Lakes were extracted from the IfSAR DSM using a slope derivative and manual correction (Jones et al., 2017). The vertical uncertainty for correctly detecting lake-based drainage gradients with the IfSAR DSM was defined by comparing surface elevation differences of several overlapping DSM tile edges. This comparison showed standard deviations of elevation between overlapping IfSAR tiles ranging from 0.0 to 0.6 meters (m). Thus, we chose a minimum height difference of 0.6 m to represent a detectable elevation gradient adjacent to a lake as being most likely to contribute to a rapid drainage event. This value is also in agreement with field verified estimates of the relative vertical accuracy (~0.5 m) of the DSM dataset around Utqiaġvik (formerly Barrow) (Manley et al., 2005) and the stated vertical RMSE (~1.0 m) of the DSM data (Intermap, 2010). Development of the potential lake drainage dataset involved several processing steps. First, lakes were classified as potential future drainage candidates if the difference between the elevation of the lake surface and the lowest elevation within a 100 m buffer of the lake shoreline exceeded our chosen threshold of 0.6 m. Next, we selected lakes with a minimum size of 10 ha to match the historic lake drainage dataset. We further filtered the dataset by selecting lakes estimated to have low hydrological connectivity based on relations between lake contributing area as determined for specific surficial geology types and presented in Jones et al. (2017). This was added to the future projection workflow to isolate the lake population that likely responds to changes in surface area driven largely by geomorphic change as opposed to differences in surface hydrology. Lakes within a basin with low to no hydrologic connectivity that had an elevation change gradient between the lake surface and surrounding landscape are considered likely locations to assess for future drainage potential. Further, the greater the elevation difference, the greater the drainage potential. This dataset provided a first-order estimate of lakes classified as being prone to future drainage. We further refined our assessment of potential drainage lakes by identifying the location of the point with the lowest elevation within the 100 m buffer of the lake shoreline and manually interpreted lakes to have a high drainage potential based on the location of the likely drainage point to known lake drainage pathways using circa 2002 orthophotography or more recent high resolution satellite imagery available for the Western Coastal Arctic Plain (WACP). Lakes classified as having a high drainage potential typically had the likely drainage location associated with one or more of the following: (1) an adjacent lake, (2) the cutbank of a river, (3) the ocean, (4) were located in an area with dense ice-wedge networks, (5) appeared to coincide with a potentially headward eroding stream, or (6) were associated with thermokarst lake shoreline processes in the moderate to high ground ice content terrain. We also added information on potential lake drainage pathways to the high potential drainage dataset by manually interpreting the landform associated with the likely drainage site to draw comparisons with the historic lake drainage dataset. 
    more » « less
  3. Lakes are abundant features on coastal plains of the Arctic and most are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Datasets presented here document water level and temperature (surface and ground) regimes for a large (38 sites) array of lake with high drainage potential and lake basin (DTLBS), which have already drained, located on differing terrain units of Alaska's Arctic Coastal Plain. Lake data was measured along deep protected shorelines using pressure transducers to record hourly water level and bed temperature. Wetland (DTLB) data was also measured with pressure transducers and ground thermistors at 25 and 100 centimeters (cm) depth. Of special interest at some DTLB sites was the potential occurrence of snow-dam outburst events during the early summer snowmelt periods. In these cases, pressure transducers were set to log at 10 minute intervals for this period. All data archived here are summarized at daily average values. 
    more » « less
  4. Abstract

    Snowdrifts formed by wind transported snow deposition represent a vital component of the earth surface processes on Arctic tundra. Snow accumulation on steep slopes particularly at the margins of rivers, coasts, lakes, and drained lake basins (DLBs) comprise a significant water storage component for the ecosystem during spring and summer snowmelt. The tundra landscape is in constant change as lakes drain, substantially altering the surface morphology that partially controls how snow drifts and accumulates throughout the cold seasons. Here, we combine field measurements, remote sensing observations, and snow modeling to investigate how lake drainage affects snow redistribution at Inigok on the Arctic Coastal Plain of Alaska, where the snow movement is controlled by wind. Field observations included measurements of snow depth using ground penetrating radar and probe. We mapped mid‐July snow cover and modeled snow redistribution before and after drainage simulation for 33 lakes (∼30 km2) in our study area (∼140 km2). Our results show the advantage of using a wide range of snow depth measurements on frozen lakes, DLBs, and upland to validate the snow modeling in order to capture the variability inherent in the landscape. The lake drainage simulation suggests an increase in snow storage of up to ∼24% at DLBs compared to extant lakes, ∼35% considering only snowdrifts (assumed as ≥1 m depth), and ∼4% considering the whole study area. This increase in snow accumulation could significantly impact the landscape when it melts, including wildlife, vegetation, biogeochemical processes, and potential natural hazards like snow‐dam outburst floods.

     
    more » « less
  5. Abstract

    Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes draining year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

     
    more » « less