skip to main content


Title: Belowground responses to altered precipitation regimes in two semi-arid grasslands
Predicted climate change extremes, such as severe or prolonged drought, may considerably impact carbon (C) and nitrogen (N) cycling in water-limited ecosystems. However, we lack a clear and mechanistic understanding of how extreme climate change events impact ecosystem processes belowground. This study investigates the effects of five years of reoccurring extreme growing season drought (66% reduction, extreme drought treatment) and two-month delay in monsoon precipitation (delayed monsoon treatment) on belowground productivity and biogeochemistry in two geographically adjacent semi-arid grasslands: Chihuahuan Desert grassland dominated by Bouteloua eriopoda and Great Plains grassland dominated by B. gracilis. After five years, extreme drought reduced belowground net primary productivity (BNPP) in the Chihuahuan Desert grassland but not in the Great Plains grassland. Across both grasslands, extreme drought increased soil pH and available soil nutrients nitrate and phosphate. The delayed monsoon treatment reduced BNPP in both grasslands. However, while available soil nitrate decreased in the Chihuahuan Desert grassland, the delayed monsoon treatment overall had little effect on soil ecosystem properties. Extreme drought and delayed monsoon treatments did not significantly impact soil microbial biomass, exoenzyme potentials, or soil C stocks relative to ambient conditions. Our study demonstrates that soil microbial biomass and exoenzyme activity in semi-arid grasslands are resistant to five years of extreme and prolonged growing season drought despite changes to soil moisture, belowground productivity, soil pH, and nutrient availability  more » « less
Award ID(s):
1856383
NSF-PAR ID:
10406154
Author(s) / Creator(s):
Date Published:
Journal Name:
Soil biology biochemistry
Volume:
171
ISSN:
0038-0717
Page Range / eLocation ID:
108725
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicted climate change extremes, such as severe and prolonged drought, may profoundly impact biogeochemical processes like carbon and nitrogen cycling in water-limited ecosystems. To increase our understanding of how extreme climate events impact belowground ecosystem processes, we investigated the effects of five years of severe growing season drought and two-month delay in monsoon precipitation on belowground productivity and biogeochemical processes in two semi-arid grasslands. This experiment takes place during the fifth year of the Extreme Drought in Grassland Experiment (EDGE) at the Sevilleta National Wildlife Refuge (SNWR), a Long-Term Ecological Research in central New Mexico, USA. The two grassland sites a Chihuahuan Desert grassland dominated by Bouteloua eriopoda and Great Plains grassland dominated by B. gracilis are ~5km apart in the SWNR. The EDGE platform was established in the spring of 2012 (pre-treatment). Each site contains three treatments (ten replicates): ambient rainfall, extreme growing season drought, and delayed monsoon. The extreme drought treatment reduces growing season rainfall (April through September) each year by 66%, which equates to a 50% reduction of annual precipitation while maintaining natural precipitation patterns. There are 10 replicates per treatment within each site. All plots are 3 x 4 m in size and are paired spatially into blocks with treatments assigned randomly within a block. We measured an array of belowground and biogeochemical variables. Each variable was measured either once, twice, or three times (specific information on sampling scheme for each measured variable in methods section). Belowground net primary productivity, standing crop root biomass, total organic carbon, and total nitrogen were measured once. Extractable organic carbon, extractable total nitrogen, microbial biomass carbon, microbial biomass nitrogen and extracellular enzymes were measured twice. Available soil nitrate, available soil ammonium, and available soil phosphate were measured three times. 
    more » « less
  2. This dataset includes estimated plant aboveground live biomass data measured in 1 m x 1 m quadrats at several sites and experiments under the Sevilleta LTER program. Quadrat locations span four distinct ecosystems and their ecotones: creosotebush dominated Chihuahuan Desert shrubland (est. winter 1999), black grama-dominated Chihuahuan Desert grassland (est. winter 1999), blue grama-dominated Plains grassland (est. winter 2002), and pinon-juniper woodland (est. winter 2003). Data on plant cover and height for each plant species are collected per individual plant or patch (for clonal plants) within 1 m x 1 m quadrats. These data inform population dynamics of foundational and rare plant species. Biomass is estimated using plant allometries from non-destructive measurements of plant cover and height, and can be used to calculate net primary production (NPP), a fundamental ecosystem variable that quantifies rates of carbon consumption and fixation. Estimates of plant species cover, total plant biomass, or NPP can inform understanding of biodiversity, species composition, and energy flow at the community scale of biological organization, as well as spatial and temporal responses of plants to a range of ecological processes and direct experimental manipulations. The cover and height of individual plants or patches are sampled twice yearly (spring and fall) in permanent 1m x 1m plots within each site or experiment. This dataset includes core site monitoring data (CORE, GRIDS, ISOWEB, TOWER), observations in response to wildfire (BURN), and experimental treatments of extreme drought and delayed monsoon rainfall (EDGE), physical disturbance to biological soil crusts on the soil surface (CRUST), interannual variability in precipitation (MEANVAR), intra-annual variability via additions of monsoon rainfall (MRME), additions of nitrogen as ammonium nitrate (FERTILIZER), additions of nitrogen x phosphorus x potassium (NutNet), and interacting effects of nighttime warming, nitrogen addition, and El Niño winter rainfall (WENNDEx). To build allometric equations that relate biomass to plant cover or volume, the dataset "SEV-LTER quadrat plant cover and height data all sites and experiments" is used with a separate dataset of selectively harvested plant species "SEV-LTER Plant species mass data for allometry." Together, these datasets produced “SEV-LTER quadrat plant species biomass all sites and experiments” using the scripts posted with the allometry dataset. Data from the CORE sites in this dataset were designated as NA-US-011 in the Global Index of Vegetation-Plot Databases (GIVD). Data from the TOWER sites in this dataset are linked to Ameriflux sites: ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and ameriflux.lbl.gov/sites/siteinfo/US-Ses. 
    more » « less
  3. This dataset includes plant species cover and height data measured in 1 m x 1 m quadrats at several sites and experiments under the Sevilleta LTER program. Quadrat locations span four distinct ecosystems and their ecotones: creosotebush dominated Chihuahuan Desert shrubland (est. winter 1999), black grama-dominated Chihuahuan Desert grassland (est. winter 1999), blue grama-dominated Plains grassland (est. winter 2002), and pinon-juniper woodland (est. winter 2003). Data on plant cover and height for each plant species are collected per individual plant or patch (for clonal plants) within 1 m x 1 m quadrats. These data inform population dynamics of foundational and rare plant species. In addition, using plant allometries, these non-destructive measurements of plant cover and height can be used to calculate net primary production (NPP), a fundamental ecosystem variable that quantifies rates of carbon consumption and fixation. Estimates of plant species cover, total plant biomass, or NPP can inform understanding of biodiversity, species composition, and energy flow at the community scale of biological organization, as well as spatial and temporal responses of plants to a range of ecological processes and direct experimental manipulations. The cover and height of individual plants or patches are sampled twice yearly (spring and fall) in permanent 1m x 1m plots within each site or experiment. This dataset includes core site monitoring data (CORE, GRIDS, ISOWEB, TOWER), observations in response to wildfire (BURN), and experimental treatments of extreme drought and delayed monsoon rainfall (EDGE), physical disturbance to biological soil crusts on the soil surface (CRUST), interannual variability in precipitation (MEANVAR), intra-annual variability via additions of monsoon rainfall (MRME), additions of nitrogen as ammonium nitrate (FERTILIZER), additions of nitrogen x phosphorus x potassium (NutNet), and interacting effects of nighttime warming, nitrogen addition, and El Niño winter rainfall (WENNDEx). To build allometric equations that relate biomass to plant cover or volume, a separate dataset of selectively harvested plant species is provided in "SEV-LTER Plant species mass data for allometry." Together, these datasets produce “SEV-LTER Plant biomass all sites and experiments” using the scripts posted with that dataset. Data from the CORE sites in this dataset were designated as NA-US-011 in the Global Index of Vegetation-Plot Databases (GIVD). Data from the TOWER sites in this dataset are linked to Ameriflux sites: ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and ameriflux.lbl.gov/sites/siteinfo/US-Ses. 
    more » « less
  4. Microbial activity in drylands is mediated by the magnitude and frequency of growing season rain events that will shift as climate change progresses. Nitrogen is often co-limiting with water availability to dryland plants, and thus we investigated how microbes important to the nitrogen (N) cycle and soil N availability varied temporally and spatially in the context of a long-term rainfall variability experiment in the northern Chihuahuan Desert. Specifically, we assessed biological soil crust (biocrust) chlorophyll content, fungal abundance, and inorganic N in soils adjacent to individuals of the grassland foundation species, Bouteloua eriopoda, and in the unvegetated interspace at multiple time points associated with an experimental monsoon rain treatment. Treatments included small weekly (5 mm) or large monthly (20 mm) rain events, which had been applied during the summer monsoon for nine years prior to our sampling. Additionally, we evaluated target plant C:N ratios and added 15 N-glutamate to biocrusts to determine potential for nutrient transport to B. eriopoda. Biocrust chlorophyll was up to 67% higher in the small weekly or large monthly rainfall regimes compared to ambient controls. Fungal biomass was 57% lower in soil interspaces than adjacent to plants but did not respond to rainfall regime treatments. Ammonium and nitrate concentrations near plants declined through the sampling period but varied little in soil interspaces. There was limited movement of 15 N from interspace biocrusts to leaves but high 15 N retention in the soils even after additional ambient and experimental rain events. Plant C:N ratio was unaffected by rainfall treatments. The long-term alteration in rainfall regime in this experiment did not change how short-term microbial abundance or N availability responded to the magnitude or frequency of events, suggesting a limited response of N availability to future climate change. 
    more » « less
  5. This study investigated the question, "Does climate change affect vegetation and seed bank composition in desert grasslands?" The work was done in the Sevilleta National Wildlife Refuge, New Mexico, USA, in in the Extreme Drought in Grassland Experiment (EDGE). Vegetation and seed bank species composition were recorded in black grama (Bouteloua eriopoda) and blue grama (B. gracilis) grasslands at Sevilleta. At each site, two rainfall manipulations and ambient controls were established in 2013 (n=10). Treatments included extreme drought (-66% rainfall reduction) and delayed monsoon (precipitation captured during July-August and reapplied during September-October). Aboveground species composition was assessed and composite soil samples were collected in 2017, five years after the experiment started. Seed bank composition was evaluated using the seedling emergence method. Rainfall treatments increased aboveground species richness at both sites, and seed bank richness only in the blue grama community. Vegetation cover was reduced by both rainfall manipulations, but seed bank density increased or remained the same compared with controls. In aboveground vegetation, cover of annual and perennial forbs increased, and dominant perennial grasses decreased. In the soil seed bank, species composition was similar among all treatments and was dominated by annual and perennial forbs. The seed bank was more resistant to drought than aboveground vegetation. Because seed banks enhance long-term community stability, their drought resistance plays an important role in maintaining ecosystem processes during and following drought in these grassland communities. 
    more » « less