skip to main content


Title: Monitoring AGNs with Hβ Asymmetry. III. Long-term Reverberation Mapping Results of 15 Palomar–Green Quasars
Abstract In this third paper of the series reporting on the reverberation mapping campaign of active galactic nuclei with asymmetric H β emission-line profiles, we present results for 15 Palomar–Green quasars using spectra obtained between the end of 2016–2021 May. This campaign combines long time spans with relatively high cadence. For eight objects, both the time lags obtained from the entire light curves and the measurements from individual observing seasons are provided. Reverberation mapping of nine of our targets has been attempted for the first time, while the results for six others can be compared with previous campaigns. We measure the H β time lags over periods of years and estimate their black hole masses. The long duration of the campaign enables us to investigate their broad-line region (BLR) geometry and kinematics for different years by using velocity-resolved lags, which demonstrate signatures of diverse BLR geometry and kinematics. The BLR geometry and kinematics of individual objects are discussed. In this sample, the BLR kinematics of Keplerian/virialized motion and inflow is more common than that of outflow.  more » « less
Award ID(s):
1852289
NSF-PAR ID:
10406312
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
262
Issue:
1
ISSN:
0067-0049
Page Range / eLocation ID:
14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.

     
    more » « less
  2. Abstract

    Fast empirical models of the broad emission line region (BLR) are a powerful tool to interpret velocity-resolved reverberation mapping (RM) data, estimate the mass of the supermassive black holes, and gain insight into its geometry and kinematics. Much of the effort so far has been devoted to describing the emissivity of one emission line at a time. We present here an alternative approach aimed at describing the underlying BLR gas distribution, by exploiting simple numerical recipes to connect it with emissivity. This approach is a step toward describing multiple emission lines originating from the same gas and allows us to clarify some issues related to the interpretation of RM data. We illustrate this approach—implemented in the codeCARAMEL-gas—using three data sets covering the Hβemission line (Mrk 50, Mrk 1511, Arp 151) that have been modeled using the emissivity-based version of the code. As expected, we find differences in the parameters describing the BLR gas and emissivity distribution, but the emissivity-weighted lag measurements and all other model parameters including black hole mass and overall BLR morphology and kinematics are consistent with the previous measurements. We also model the Hαemission line for Arp 151 using both the gas- and emissivity-based BLR models. We find ionization stratification in the BLR with Hαarising at larger radii than Hβ, while all other model parameters are consistent within the uncertainties.

     
    more » « less
  3. Abstract

    We describe the results of a new reverberation mapping program focused on the nearby Seyfert galaxy NGC 3227. Photometric and spectroscopic monitoring was carried out from 2022 December to 2023 June with the Las Cumbres Observatory network of telescopes. We detected time delays in several optical broad emission lines, with Hβhaving the longest delay atτcent=4.00.9+0.9days and Heiihaving the shortest delay withτcent=0.90.8+1.1days. We also detect velocity-resolved behavior of the Hβemission line, with different line-of-sight velocities corresponding to different observed time delays. Combining the integrated Hβtime delay with the width of the variable component of the emission line and a standard scale factor suggests a black hole mass ofMBH=1.10.3+0.2×107M. Modeling of the full velocity-resolved response of the Hβemission line with the phenomenological codeCARAMELfinds a similar mass ofMBH=1.20.7+1.5×107Mand suggests that the Hβ-emitting broad-line region (BLR) may be represented by a biconical or flared disk structure that we are viewing at an inclination angle ofθi≈ 33° and with gas motions that are dominated by rotation. The new photoionization-based BLR modeling toolBELMACfinds general agreement with the observations when assuming the best-fitCARAMELresults; however,BELMACprefers a thick-disk geometry and kinematics that are equally composed of rotation and inflow. Both codes infer a radially extended and flattened BLR that is not outflowing.

     
    more » « less
  4. Abstract

    We performed a rigorous reverberation-mapping analysis of the broad-line region (BLR) in a highly accreting (L/LEdd= 0.74–3.4) active galactic nucleus, Markarian 142 (Mrk 142), for the first time using concurrent observations of the inner accretion disk and the BLR to determine a time lag for the Hβλ4861 emission relative to the ultraviolet (UV) continuum variations. We used continuum data taken with the Niel Gehrels Swift Observatory in theUVW2 band, and the Las Cumbres Observatory, Dan Zowada Memorial Observatory, and Liverpool Telescope in thegband, as part of the broader Mrk 142 multiwavelength monitoring campaign in 2019. We obtained new spectroscopic observations covering the Hβbroad emission line in the optical from the Gemini North Telescope and the Lijiang 2.4 m Telescope for a total of 102 epochs (over a period of 8 months) contemporaneous to the continuum data. Our primary result states a UV-to-Hβtime lag of8.680.72+0.75days in Mrk 142 obtained from light-curve analysis with a Python-based running optimal average algorithm. We placed our new measurements for Mrk 142 on the optical and UV radius–luminosity relations for NGC 5548 to understand the nature of the continuum driver. The positions of Mrk 142 on the scaling relations suggest that UV is closer to the “true” driving continuum than the optical. Furthermore, we obtainlog(M/M)= 6.32 ± 0.29 assuming UV as the primary driving continuum.

     
    more » « less
  5. null (Ed.)
    The angular size of the broad line region (BLR) of the nearby active galactic nucleus NGC 3783 has been spatially resolved by recent observations with VLTI/GRAVITY. A reverberation mapping (RM) campaign has also recently obtained high quality light curves and measured the linear size of the BLR in a way that is complementary to the GRAVITY measurement. The size and kinematics of the BLR can be better constrained by a joint analysis that combines both GRAVITY and RM data. This, in turn, allows us to obtain the mass of the supermassive black hole in NGC 3783 with an accuracy that is about a factor of two better than that inferred from GRAVITY data alone. We derive M BH = 2.54 −0.72 +0.90 × 10 7 M ⊙ . Finally, and perhaps most notably, we are able to measure a geometric distance to NGC 3783 of 39.9 −11.9 +14.5 Mpc. We are able to test the robustness of the BLR-based geometric distance with measurements based on the Tully–Fisher relation and other indirect methods. We find the geometric distance is consistent with other methods within their scatter. We explore the potential of BLR-based geometric distances to directly constrain the Hubble constant, H 0 , and identify differential phase uncertainties as the current dominant limitation to the H 0 measurement precision for individual sources. 
    more » « less