The abundance of cold molecular gas plays a crucial role in models of galaxy evolution. While deep spectroscopic surveys of CO emission lines have been a primary tool for measuring this abundance, the difficulty of these observations has motivated alternative approaches to studying molecular gas content. One technique, line intensity mapping, seeks to constrain the average molecular gas properties of large samples of individually undetectable galaxies through the CO brightness power spectrum. Here we present constraints on the cross-power spectrum between CO intensity maps and optical galaxy catalogs. This cross-measurement allows us to check for systematic problems in CO intensity mapping data, and validate the data analysis used for the auto-power spectrum measurement of the CO Power Spectrum Survey. We place a 2
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne cryogenic telescope that will survey the spectrum of diffuse emission from both the Milky Way and the cosmic web to probe star formation, the interstellar medium, and galaxy evolution across cosmic time. EXCLAIM’s primary extragalactic science survey maps 305 deg2 along the celestial equator with an R = 512 spectrometer over the frequency range ν = 420 − 540 GHz, targeting emission of the [C ii] line over redshifts 2.5 < z < 3.5 and several CO lines for z < 1. Cross-correlation with galaxy redshift catalogues isolates line emission from the large-scale structure at target redshifts. In this paper, we forecast the sensitivity for both the two-point and conditional one-point cross-correlation. We predict that EXCLAIM will detect both the [C ii]-QSO cross-power spectrum and the conditional voxel intensity distribution (CVID) at various redshifts under a broad range of [C ii] intensity models, allowing it to differentiate among these models in the literature. These forecasts for the power spectra include the effects of line interlopers and continuum foreground contamination. We then convert the joint [C ii] constraints from both the cross-power spectrum and the CVID into constraints on the [C ii] halo luminosity–mass relation $L_\mathrm{[C\, \small {II}]}(M)$ model parameters and the star formation rate density (SFRD) from [C ii] emission. We also develop sensitivity estimates for CO, showing the ability to differentiate between models.
more » « less- PAR ID:
- 10406376
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 521
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 6124-6142
- Size(s):
- p. 6124-6142
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ upper limit on the band-averaged CO-galaxy cross-power ofP ×< 540μ K h−3Mpc3. Our measurement favors a nonzero 〈T CO〉 at around 90% confidence and gives an upper limit on the mean molecular gas density atz ∼ 2.6 of 7.7 × 108M ⊙Mpc−3. We forecast the expected cross-power spectrum by applying a number of literature prescriptions for the CO luminosity–halo mass relation to a suite of mock light cones. Under the most optimistic forecasts, the cross-spectrum could be detected with only moderate extensions of the data used here, while more conservative models could be detected with a factor of 10 increase in sensitivity. Ongoing CO intensity mapping experiments will target fields allowing for extensive cross-correlation analysis and should reach the sensitivity required to detect the cross-spectrum signal. -
ABSTRACT Line intensity mapping (LIM) experiments probing the nearby Universe can expect a considerable amount of cosmic infrared background (CIB) continuum emission from near and far-infrared galaxies. For the purpose of using LIM to constrain the star formation rate (SFR), we argue that the CIB continuum – traditionally treated as contamination – can be combined with the LIM signal to enhance the SFR constraints achievable. We first present a power spectrum model that combines continuum and line emissions assuming a common SFR model. We subsequently analyse the effectiveness of the joint model in the context of the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM), which utilizes the $[{\rm C\, \small {II}}]$ molecular line to study the SFR. We numerically compute the theoretical power spectra according to our model and the EXCLAIM survey specifics, and perform Fisher analysis to forecast the SFR constraints. We find that although the joint model has no considerable advantage over LIM alone assuming the current survey level of EXCLAIM, its effects become significant when we consider more optimistic values of survey resolution and angular span that are expected of future LIM experiments. We show that the CIB is not only an additional SFR sensitive signal, but also serves to break the SFR parameter degeneracy that naturally emerges from the $[{\rm C\, \small {II}}]$ Fisher matrix. For this reason, addition of the CIB will allow improvements in the survey parameters to be better reflected in the SFR constraints, and can be effectively utilized by future LIM experiments.
-
Abstract We present the current state of models for the z ∼ 3 carbon monoxide (CO) line intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy–halo connection and previous CO (1–0) observations. The Pathfinder early science data spanning wavenumbers k = 0.051–0.62 Mpc −1 represent the first direct 3D constraint on the clustering component of the CO (1–0) power spectrum. Our 95% upper limit on the redshift-space clustering amplitude A clust ≲ 70 μ K 2 greatly improves on the indirect upper limit of 420 μ K 2 reported from the CO Power Spectrum Survey (COPSS) measurement at k ∼ 1 Mpc −1 . The COMAP limit excludes a subset of models from previous literature and constrains interpretation of the COPSS results, demonstrating the complementary nature of COMAP and interferometric CO surveys. Using line bias expectations from our priors, we also constrain the squared mean line intensity–bias product, Tb 2 ≲ 50 μ K 2 , and the cosmic molecular gas density, ρ H2 < 2.5 × 10 8 M ⊙ Mpc −3 (95% upper limits). Based on early instrument performance and our current CO signal estimates, we forecast that the 5 yr Pathfinder campaign will detect the CO power spectrum with overall signal-to-noise ratio of 9–17. Between then and now, we also expect to detect the CO–galaxy cross-spectrum using overlapping galaxy survey data, enabling enhanced inferences of cosmic star formation and galaxy evolution history.more » « less
-
ABSTRACT We analyse the completeness of the MOSDEF survey, in which z ∼ 2 galaxies were selected for rest-optical spectroscopy from well-studied HST extragalactic legacy fields down to a fixed rest-optical magnitude limit (HAB = 24.5). The subset of z ∼ 2 MOSDEF galaxies with high signal-to-noise (S/N) emission-line detections analysed in previous work represents a small minority (<10 per cent) of possible z ∼ 2 MOSDEF targets. It is therefore crucial to understand how representative this high S/N subsample is, while also more fully exploiting the MOSDEF spectroscopic sample. Using spectral-energy distribution (SED) models and rest-optical spectral stacking, we compare the MOSDEF z ∼ 2 high S/N subsample with the full MOSDEF sample of z ∼ 2 star-forming galaxies with redshifts, the latter representing an increase in sample size of more than a factor of three. We find that both samples have similar emission-line properties, in particular in terms of the magnitude of the offset from the local star-forming sequence on the [N ii] BPT diagram. There are small differences in median host galaxy properties, including the stellar mass (M*), star formation rate (SFR) and specific SFR (sSFR), and UVJ colours; however, these offsets are minor considering the wide spread of the distributions. Using SED modelling, we also demonstrate that the sample of z ∼ 2 star-forming galaxies observed by the MOSDEF survey is representative of the parent catalog of available such targets. We conclude that previous MOSDEF results on the evolution of star-forming galaxy emission-line properties were unbiased relative to the parent z ∼ 2 galaxy population.more » « less
-
ABSTRACT We analyse the completeness of the MOSDEF survey, in which z ∼ 2 galaxies were selected for rest-optical spectroscopy from well-studied HST extragalactic legacy fields down to a fixed rest-optical magnitude limit (HAB = 24.5). The subset of z ∼ 2 MOSDEF galaxies with high signal-to-noise (S/N) emission-line detections analysed in previous work represents a small minority (<10 per cent) of possible z ∼ 2 MOSDEF targets. It is therefore crucial to understand how representative this high S/N subsample is, while also more fully exploiting the MOSDEF spectroscopic sample. Using spectral-energy distribution (SED) models and rest-optical spectral stacking, we compare the MOSDEF z ∼ 2 high S/N subsample with the full MOSDEF sample of z ∼ 2 star-forming galaxies with redshifts, the latter representing an increase in sample size of more than a factor of three. We find that both samples have similar emission-line properties, in particular in terms of the magnitude of the offset from the local star-forming sequence on the [N ii] BPT diagram. There are small differences in median host galaxy properties, including the stellar mass (M*), star formation rate (SFR) and specific SFR (sSFR), and UVJ colours; however, these offsets are minor considering the wide spread of the distributions. Using SED modelling, we also demonstrate that the sample of z ∼ 2 star-forming galaxies observed by the MOSDEF survey is representative of the parent catalog of available such targets. We conclude that previous MOSDEF results on the evolution of star-forming galaxy emission-line properties were unbiased relative to the parent z ∼ 2 galaxy population.