- Award ID(s):
- 1714816
- NSF-PAR ID:
- 10406592
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 926
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 141
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present spatially resolved spectroscopy from the Keck Cosmic Web Imager (KCWI) of a star-forming galaxy at z = 0.6942, which shows emission from the Mg ii λ λ 2796, 2803 doublet in the circumgalactic medium (CGM) extending ∼37 kpc at 3 σ significance in individual spaxels (1 σ detection limit 4.8 × 10 −19 erg s −1 cm −2 arcsec −2 ). The target galaxy, selected from a near-UV spectroscopic survey of Mg ii line profiles at 0.3 < z < 1.4, has a stellar mass log ( M * / M ⊙ ) = 9.9, a star formation rate of 50 M ⊙ yr −1 , and a morphology indicative of a merger. After deconvolution with the seeing, we obtain 5 σ detections of Mg ii line emission extending for ∼31 kpc measured in 7-spaxel (1.1 arcsec 2 ) apertures. Spaxels covering the galaxy stellar regions show clear P Cygni−like emission/absorption profiles, with the blueshifted absorption extending to relative velocities of v = −800 km s −1 ; however, the P Cygni profiles give way to pure emission at large radii from the central galaxy. We have performed 3D radiative transfer modeling to infer the geometry and velocity and density profiles of the outflowing gas. Our observations are most consistent with an isotropic outflow rather than biconical wind models with half-opening angles ϕ ≤ 80°. Furthermore, our modeling suggests that a wind velocity profile that decreases with radius is necessary to reproduce the velocity widths and strengths of Mg ii line emission profiles at large circumgalactic radii. The extent of the Mg ii emission we measure directly is further corroborated by our modeling, where we rule out outflow models with extent <30 kpc.more » « less
-
null (Ed.)ABSTRACT We derive a new mass estimator that relies on internal proper motion measurements of dispersion-supported stellar systems, one that is distinct and complementary to existing estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that there exists a radius where the mass enclosed depends only on the projected tangential velocity dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass is $M(r_{-2}) = 2 G^{-1} \langle \sigma _{\mathcal {T}}^{2}\rangle ^{*} r_{-2}$ and the circular velocity is $V^{2}({r_{-2}}) = 2\langle \sigma _{\mathcal {T}}^{2}\rangle ^{*}$. For a Plummer profile r−2 ≃ 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass profiles of dispersion-supported galaxies. We illustrate its applicability using published proper motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out a core. We test our combined mass estimators against previously published, non-spherical cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturally cuspy profile) and self-interacting dark matter (SIDM; cored profile). For CDM, the estimates for the dynamic rotation curves are found to be accurate to $10\rm { per\, cent}$ while SIDM are accurate to $15\rm { per\, cent}$. Unfortunately, this level of accuracy is not good enough to measure slopes at the level required to distinguish between cusps and cores of the type predicted in viable SIDM models without stronger priors. However, we find that this provides good enough accuracy to distinguish between the normalization differences predicted at small radii (r ≃ r−2 < rcore) for interesting SIDM models. As the number of galaxies with internal proper motions increases, mass estimators of this kind will enable valuable constraints on SIDM and CDM models.more » « less
-
ABSTRACT We present new MMT/Hectochelle spectroscopic measurements for 257 stars observed along the line of sight to the ultrafaint dwarf galaxy Triangulum II (Tri II). Combining results from previous Keck/DEIMOS spectroscopy, we obtain a sample that includes 16 likely members of Tri II, with up to 10 independent redshift measurements per star. To this multi-epoch kinematic data set, we apply methodology that we develop in order to infer binary orbital parameters from sparsely sampled radial velocity curves with as few as two epochs. For a previously identified (spatially unresolved) binary system in Tri II, we infer an orbital solution with period $296.0_{-3.3}^{+3.8} \rm ~ d$, semimajor axis $1.12^{+0.41}_{-0.24}\rm ~au$, and systemic velocity $-380.0 \pm 1.7 \rm ~km ~s^{-1}$ that we then use in the analysis of Tri II’s internal kinematics. Despite this improvement in the modelling of binary star systems, the current data remain insufficient to resolve the velocity dispersion of Tri II. We instead find a 95 per cent confidence upper limit of $\sigma _{v} \lesssim 3.4 \rm ~km~s^{-1}$.
-
Abstract We analyze the cool gas in and around 14 nearby galaxies (at
z < 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi , Ni , Oi , and Ari ), low-ionization (Siii , Sii , Cii , Nii , and Feii ), and high-ionization (Siiii , Feiii , Nv , and Ovi ) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudy photoionization models. The Hi column density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forr ≳R e . Galaxies with higher stellar mass have weaker Hi absorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10R e . Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hi column density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM. -
Abstract We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Ca
ii λλ 3934, 3969 and Nai λλ 5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z < 0.20 with stellar masses 7.4 ≤ logM */M ⊙≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R ⊥< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN (Caii ) > 1012.5cm−2(N (Nai ) > 1012.0cm−2) occur with an incidencef C(Caii ) = 0.63+0.10−0.11(f C(Nai ) = 0.57+0.10−0.11). We find no evidence for a dependence off Cor the rest-frame equivalent widthsW r (Caii K) orW r (Nai 5891) onR ⊥orM *. Instead,W r (Caii K) is correlated with local SFR at >3σ significance, suggesting that Caii traces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv 90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR ⊥> 5 kpc. Finally, we assess the relationship between dust reddening andW r (Caii K) (W r (Nai 5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE (B −V)-W r relations at >3σ significance.