skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A variational theory of lift
In this paper we revive a special, less-common, variational principle in analytical mechanics (Hertz’ principle of least curvature) to develop a novel variational analogue of Euler's equations for the dynamics of an ideal fluid. The new variational formulation is fundamentally different from those formulations based on Hamilton's principle of least action. Using this new variational formulation, we generalize the century-old problem of the flow over a two-dimensional body; we developed a variational closure condition that is, unlike the Kutta condition, derived from first principles. The developed variational principle reduces to the classical Kutta–Zhukovsky condition in the special case of a sharp-edged airfoil, which challenges the accepted wisdom about the Kutta condition being a manifestation of viscous effects. Rather, we found that it represents conservation of momentum. Moreover, the developed variational principle provides, for the first time, a theoretical model for lift over smooth shapes without sharp edges where the Kutta condition is not applicable. We discuss how this fundamental divergence from current theory can explain discrepancies in computational studies and experiments with superfluids.  more » « less
Award ID(s):
2005541
PAR ID:
10406650
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
941
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many studies over the 1960’s reported failure in predicting accurate flutter boundaries using the classical theory of unsteady aerodynamics even at zero angle of attack and/or lift conditions. Since the flutter phenomenon lies in the intersection between unsteady aerodynamics and structural dynamics, and because the structural dynamics of slender beams can be fairly predicted, it was inferred that the problem stems from the classical theory of unsteady aerodynamics. As a result, a research flurry occurred over the 1970’s and 1980’s investigating such a theory, with particular emphasis on the applicability of the Kutta condition to unsteady flows. There was almost a consensus that the Kutta condition must to be relaxed at high frequencies and low Reynolds numbers, which was also concluded from several recent studies of the unsteady aerodynamics of bio-inspired flight. Realizing that vorticity generation and lift development are essentially viscous processes, we develop a viscous extension of the classical theory of unsteady aerodynamics, equivalently an unsteady extension of the boundary layer theory. We rely on a special boundary layer theory that pays close attention to the details in the vicinity of the trailing edge: the triple deck theory. We use such a theory to relax the Kutta condition and determine a viscous correction to the inviscid unsteady lift. Using the developed viscous unsteady model, we develop a Reynolds-number-dependent lift frequency response (i.e., a viscous extension of Theodorsen’s). It is found that viscosity induces a significant phase lag to the lift development beyond Theodorsen’s inviscid solution, particularly at high frequencies and low Reynolds numbers. Since flutter, similar to any typical hopf bifurcation, is mainly dictated by the phase difference between the applied loads and the motion, it is expected that the viscosity-induced lag will affect the flutter boundary. To assess such an effect, we couple the developed unsteady viscous aerodynamic theory with a structural dynamic model of a typical section to perform aeroelastic simulation and analysis. We compare the flutter boundary determined using the developed viscous unsteady model to that of Theodorsen’s. 
    more » « less
  2. The application of the Kutta condition to unsteady flows has been controversial over the years, with increased research activities over the 1970s and 1980s. This dissatisfaction with the Kutta condition has been recently rejuvenated with the increased interest in low-Reynolds-number, high-frequency bio-inspired flight. However, there is no convincing alternative to the Kutta condition, even though it is not mathematically derived. Realizing that the lift generation and vorticity production are essentially viscous processes, we provide a viscous extension of the classical theory of unsteady aerodynamics by relaxing the Kutta condition. We introduce a trailing-edge singularity term in the pressure distribution and determine its strength by using the triple-deck viscous boundary layer theory. Based on the extended theory, we develop (for the first time) a theoretical viscous (Reynolds-number-dependent) extension of the Theodorsen lift frequency response function. It is found that viscosity induces more phase lag to the Theodorsen function particularly at high frequencies and low Reynolds numbers. The obtained theoretical results are validated against numerical laminar simulations of Navier–Stokes equations over a sinusoidally pitching NACA 0012 at low Reynolds numbers and using Reynolds-averaged Navier–Stokes equations at relatively high Reynolds numbers. The physics behind the observed viscosity-induced lag is discussed in relation to wake viscous damping, circulation development and the Kutta condition. Also, the viscous contribution to the lift is shown to significantly decrease the virtual mass, particularly at high frequencies and Reynolds numbers. 
    more » « less
  3. The primal variational formulation of the fourth-order Cahn-Hilliard equation requires C1-continuous finite element discretizations, e.g., in the context of isogeometric analysis. In this paper, we explore the variational imposition of essential boundary conditions that arise from the thermodynamic derivation of the Cahn-Hilliard equation in primal variables. Our formulation is based on the symmetric variant of Nitsche's method, does not introduce additional degrees of freedom and is shown to be variationally consistent. In contrast to strong enforcement, the new boundary condition formulation can be naturally applied to any mapped isogeometric parametrization of any polynomial degree. In addition, it preserves full accuracy, including higher-order rates of convergence, which we illustrate for boundary-fitted discretizations of several benchmark tests in one, two and three dimensions. Unfitted Cartesian B-spline meshes constitute an effective alternative to boundary-fitted isogeometric parametrizations for constructing C1-continuous discretizations, in particular for complex geometries. We combine our variational boundary condition formulation with unfitted Cartesian B-spline meshes and the finite cell method to simulate chemical phase segregation in a composite electrode. This example, involving coupling of chemical fields with mechanical stresses on complex domains and coupling of different materials across complex interfaces, demonstrates the flexibility of variational boundary conditions in the context of higher-order unfitted isogeometric discretizations. 
    more » « less
  4. null (Ed.)
    A bstract This work is the first step in a two-part investigation of real-time replica wormholes. Here we study the associated real-time gravitational path integral and construct the variational principle that will define its saddle-points. We also describe the general structure of the resulting real-time replica wormhole saddles, setting the stage for construction of explicit examples. These saddles necessarily involve complex metrics, and thus are accessed by deforming the original real contour of integration. However, the construction of these saddles need not rely on analytic continuation, and our formulation can be used even in the presence of non-analytic boundary-sources. Furthermore, at least for replica- and CPT-symmetric saddles we show that the metrics may be taken to be real in regions spacelike separated from a so-called ‘splitting surface’. This feature is an important hallmark of unitarity in a field theory dual. 
    more » « less
  5. Motivated by recent developments in Hamiltonian variational principles, Hamiltonian variational integrators, and their applications such as to optimization and control, we present a new Type II variational approach for Hamiltonian systems, based on a virtual work principle that enforces the Type II boundary conditions through a combination of essential and natural boundary conditions; particularly, this approach allows us to define this variational principle intrinsically on manifolds. We first develop this variational principle on vector spaces and subsequently extend it to parallelizable manifolds, general manifolds, as well as to the infinite-dimensional setting. Furthermore, we provide a review of variational principles for Hamiltonian systems in various settings as well as their applications. 
    more » « less