Summary Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied.We developed an approach for clamping leaf‐to‐air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming‐induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature‐sensitive proteins, Phytochrome B (phyB) and EARLY‐FLOWERING‐3 (ELF3).We confirmed thatphot1‐5/phot2‐1leaves lacking blue‐light photoreceptors showed partially reduced warming‐induced stomatal opening. Furthermore, ABA‐biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly,Arabidopsis(dicot) andBrachypodium distachyon(monocot) mutants lacking guard cell CO2sensors and signaling mechanisms, includinght1,mpk12/mpk4‐gc, andcbc1/cbc2abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis.We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2assimilation and stomatal CO2sensing. Additionally, increasing heat stress functions via a distinct photosynthesis‐uncoupled stomatal opening pathway.
more »
« less
A role for ethylene signaling and biosynthesis in regulating and accelerating CO2 ‐ and abscisic acid‐mediated stomatal movements in Arabidopsis
Summary Little is known about long‐distance mesophyll‐driven signals that regulate stomatal conductance. Soluble and/or vapor‐phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance inArabidopsis thalianaby CO2/abscisic acid (ABA) was examined.We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll‐dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene‐signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2]‐shifts.According to our research, higher [CO2] causes Arabidopsis rosettes to produce more ethylene. An ACC‐synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2‐induced stomatal movements. Ethylene‐insensitive receptor (gain‐of‐function),etr1‐1andetr2‐1, and signaling,ein2‐5andein2‐1, mutants showed intact stomatal responses to [CO2]‐shifts, whereas loss‐of‐function ethylene receptor mutants, includingetr2‐3;ein4‐4;ers2‐3,etr1‐6;etr2‐3andetr1‐6, showed markedly accelerated stomatal responses to [CO2]‐shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC‐synthase octuple mutant and accelerated stomatal responses in theetr1‐6;etr2‐3, andetr1‐6, but not in theetr2‐3;ein4‐4;ers2‐3mutants.These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2and ABA.
more »
« less
- Award ID(s):
- 1900567
- PAR ID:
- 10406724
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 238
- Issue:
- 6
- ISSN:
- 0028-646X
- Format(s):
- Medium: X Size: p. 2460-2475
- Size(s):
- p. 2460-2475
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas‐exchange measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2, light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very slightly depended upon JA and SA biosynthesis and signaling mutants, includingdde2, sid2, coi1,jai1,myc2andnpr1alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2, light and ozone, ABA‐triggered stomatal closure innpr1‐1was slightly accelerated compared with the wild type. Stomatal reopening after ozone pulses was quicker in thecoi1‐16mutant than in the wild type. In intact Arabidopsis plants, spraying with methyl‐JA led to only a modest reduction in stomatal conductance 80 min after treatment, whereas ABA and CO2induced pronounced stomatal closure within minutes. We could not document a reduction of stomatal conductance after spraying with SA. Coronatine‐induced stomatal opening was initiated slowly after 1.5–2.0 h, and reached a maximum by 3 h after spraying intact plants. Our results suggest that ABA, CO2and light are major regulators of rapid guard cell signaling, whereas JA and SA could play only minor roles in the whole‐plant stomatal response to environmental cues in Arabidopsis andSolanum lycopersicum(tomato).more » « less
-
Summary Low concentrations of CO2cause stomatal opening, whereas [CO2] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+and protein phosphorylation in CO2‐induced stomatal closing. Calcium‐dependent protein kinases (CPKs) and calcineurin‐B‐like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+into specific phosphorylation events. However, Ca2+‐binding proteins that function in the stomatal CO2response remain unknown.Time‐resolved stomatal conductance measurements using intact plants, and guard cell patch‐clamp experiments were performed.We isolatedcpkquintuple mutants and analyzed stomatal movements in response to CO2, light and abscisic acid (ABA). Interestingly, we found thatcpk3/5/6/11/23quintuple mutant plants, but not other analyzedcpkquadruple/quintuple mutants, were defective in high CO2‐induced stomatal closure and, unexpectedly, also in low CO2‐induced stomatal opening. Furthermore, K+‐uptake‐channel activities were reduced incpk3/5/6/11/23quintuple mutants, in correlation with the stomatal opening phenotype. However, light‐mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2‐regulated stomatal movement kinetics were not clearly affected in plasma membrane‐targetedcbl1/4/5/8/9quintuple mutant plants.Our findings describe combinatorialcpkmutants that function in CO2control of stomatal movements and support the results of classical studies showing a role for Ca2+in this response.more » « less
-
Summary Calcium‐dependent protein kinases (CDPKs) play vital roles in metabolic regulations and stimuli responses in plants. However, little is known about their function in grapevine.Here, we report thatVpCDPK9andVpCDPK13, two paralogousCDPKsfromVitis pseudoreticulataaccession Baihe‐35‐1, appear to positively regulate powdery mildew resistance. The transcription of them in leaves of ‘Baihe‐35‐1’ were differentially induced upon powdery mildew infection. Overexpression ofVpCDPK9‐YFPorVpCDPK13‐YFPin theV. viniferasusceptible cultivar Thompson Seedless resulted in enhanced resistance to powdery mildew (YFP, yellow fluorescent protein). This might be due to elevation of SA and ethylene production, and excess accumulation of H2O2and callose in penetrated epidermal cells and/or the mesophyll cells underneath.Ectopic expression ofVpCDPK9‐YFPin Arabidopsis resulted in varied degrees of reduced stature, pre‐mature senescence and enhanced powdery mildew resistance. However, these phenotypes were abolished inVpCDPK9‐YFPtransgenic lines impaired in SA signaling (pad4sid2) or ethylene signaling (ein2). Moreover, both of VpCDPK9 and VpCDPK13 were found to interact with and potentially phosphorylate VpMAPK3, VpMAPK6, VpACS1 and VpACS2in vivo(ACS, 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthase; MAPK, mitogen‐activated protein kinase).These results suggest thatVpCDPK9andVpCDPK13contribute to powdery mildew resistance via positively regulating SA and ethylene signaling in grapevine.more » « less
-
Abstract The phytohormone ethylene has numerous effects on plant growth and development. Its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is a non-proteinogenic amino acid produced by ACC SYNTHASE (ACS). ACC is often used to induce ethylene responses. Here, we demonstrate that ACC exhibits ethylene-independent signaling inArabidopsis thalianareproduction. By analyzing anacsoctuple mutant with reduced seed set, we find that ACC signaling in ovular sporophytic tissue is involved in pollen tube attraction, and promotes secretion of the pollen tube chemoattractant LURE1.2. ACC activates Ca2+-containing ion currents via GLUTAMATE RECEPTOR-LIKE (GLR) channels in root protoplasts. In COS-7 cells expressing mossPpGLR1, ACC induces the highest cytosolic Ca2+elevation compared to all twenty proteinogenic amino acids. In ovules, ACC stimulates transient Ca2+elevation, and Ca2+influx in octuple mutant ovules rescues LURE1.2 secretion. These findings uncover a novel ACC function and provide insights for unraveling new physiological implications of ACC in plants.more » « less