skip to main content


Title: High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0
Abstract Motivation

Gene regulatory networks define regulatory relationships between transcription factors and target genes within a biological system, and reconstructing them is essential for understanding cellular growth and function. Methods for inferring and reconstructing networks from genomics data have evolved rapidly over the last decade in response to advances in sequencing technology and machine learning. The scale of data collection has increased dramatically; the largest genome-wide gene expression datasets have grown from thousands of measurements to millions of single cells, and new technologies are on the horizon to increase to tens of millions of cells and above.

Results

In this work, we present the Inferelator 3.0, which has been significantly updated to integrate data from distinct cell types to learn context-specific regulatory networks and aggregate them into a shared regulatory network, while retaining the functionality of the previous versions. The Inferelator is able to integrate the largest single-cell datasets and learn cell-type-specific gene regulatory networks. Compared to other network inference methods, the Inferelator learns new and informative Saccharomyces cerevisiae networks from single-cell gene expression data, measured by recovery of a known gold standard. We demonstrate its scaling capabilities by learning networks for multiple distinct neuronal and glial cell types in the developing Mus musculus brain at E18 from a large (1.3 million) single-cell gene expression dataset with paired single-cell chromatin accessibility data.

Availability and implementation

The inferelator software is available on GitHub (https://github.com/flatironinstitute/inferelator) under the MIT license and has been released as python packages with associated documentation (https://inferelator.readthedocs.io/).

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10406820
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
38
Issue:
9
ISSN:
1367-4803
Format(s):
Medium: X Size: p. 2519-2528
Size(s):
["p. 2519-2528"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Birol, Inanc (Ed.)
    Abstract Motivation

    Single-cell RNA sequencing (scRNA-seq) is widely used for analyzing gene expression in multi-cellular systems and provides unprecedented access to cellular heterogeneity. scRNA-seq experiments aim to identify and quantify all cell types present in a sample. Measured single-cell transcriptomes are grouped by similarity and the resulting clusters are mapped to cell types based on cluster-specific gene expression patterns. While the process of generating clusters has become largely automated, annotation remains a laborious ad hoc effort that requires expert biological knowledge.

    Results

    Here, we introduce CellMeSH—a new automated approach to identifying cell types for clusters based on prior literature. CellMeSH combines a database of gene–cell-type associations with a probabilistic method for database querying. The database is constructed by automatically linking gene and cell-type information from millions of publications using existing indexed literature resources. Compared to manually constructed databases, CellMeSH is more comprehensive and is easily updated with new data. The probabilistic query method enables reliable information retrieval even though the gene–cell-type associations extracted from the literature are noisy. CellMeSH is also able to optionally utilize prior knowledge about tissues or cells for further annotation improvement. CellMeSH achieves top-one and top-three accuracies on a number of mouse and human datasets that are consistently better than existing approaches.

    Availability and implementation

    Web server at https://uncurl.cs.washington.edu/db_query and API at https://github.com/shunfumao/cellmesh.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    Elucidating the topology of gene regulatory networks (GRNs) from large single-cell RNA sequencing datasets, while effectively capturing its inherent cell-cycle heterogeneity and dropouts, is currently one of the most pressing problems in computational systems biology. Recently, graph learning (GL) approaches based on graph signal processing have been developed to infer graph topology from signals defined on graphs. However, existing GL methods are not suitable for learning signed graphs, a characteristic feature of GRNs, which are capable of accounting for both activating and inhibitory relationships in the gene network. They are also incapable of handling high proportion of zero values present in the single cell datasets.

    Results

    To this end, we propose a novel signed GL approach, scSGL, that learns GRNs based on the assumption of smoothness and non-smoothness of gene expressions over activating and inhibitory edges, respectively. scSGL is then extended with kernels to account for non-linearity of co-expression and for effective handling of highly occurring zero values. The proposed approach is formulated as a non-convex optimization problem and solved using an efficient ADMM framework. Performance assessment using simulated datasets demonstrates the superior performance of kernelized scSGL over existing state of the art methods in GRN recovery. The performance of scSGL is further investigated using human and mouse embryonic datasets.

    Availability and implementation

    The scSGL code and analysis scripts are available on https://github.com/Single-Cell-Graph-Learning/scSGL.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    The analysis of spatially resolved transcriptome enables the understanding of the spatial interactions between the cellular environment and transcriptional regulation. In particular, the characterization of the gene–gene co-expression at distinct spatial locations or cell types in the tissue enables delineation of spatial co-regulatory patterns as opposed to standard differential single gene analyses. To enhance the ability and potential of spatial transcriptomics technologies to drive biological discovery, we develop a statistical framework to detect gene co-expression patterns in a spatially structured tissue consisting of different clusters in the form of cell classes or tissue domains.

    Results

    We develop SpaceX (spatially dependent gene co-expression network), a Bayesian methodology to identify both shared and cluster-specific co-expression network across genes. SpaceX uses an over-dispersed spatial Poisson model coupled with a high-dimensional factor model which is based on a dimension reduction technique for computational efficiency. We show via simulations, accuracy gains in co-expression network estimation and structure by accounting for (increasing) spatial correlation and appropriate noise distributions. In-depth analysis of two spatial transcriptomics datasets in mouse hypothalamus and human breast cancer using SpaceX, detected multiple hub genes which are related to cognitive abilities for the hypothalamus data and multiple cancer genes (e.g. collagen family) from the tumor region for the breast cancer data.

    Availability and implementation

    The SpaceX R-package is available at github.com/bayesrx/SpaceX.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy.

    Results

    In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approaches that estimate two GRNs separately. Analysis of a dataset of lung cancer and another dataset of gastric cancer with FSSEM inferred differential GRNs in cancer versus normal tissues, whose genes with largest network degrees have been reported to be implicated in tumorigenesis. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions.

    Availability and implementation

    The R package fssemR implementing the FSSEM algorithm is available at https://github.com/Ivis4ml/fssemR.git. It is also available on CRAN.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell–cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model.

    Results

    We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks.

    Availability and implementation

    The source code and data is available at https://github.com/MihirBafna/CLARIFY.

     
    more » « less