Consistent individual differences in behavior, known as behavioral individuality, are pervasive across the animal world and have major ecological and evolutionary consequences. Nevertheless, we still have a limited understanding of what drives individuality and how it emerges during ontogeny. Here, we subjected clonal individuals to a ubiquitous yet critical environmental challenge—the threat of predation—to disentangle the developmental mechanisms of individuality. Under such a salient environmental stressor, among-individual differences may collapse or expand depending on whether there is a single or multiple optimal strategies, demonstrating that individuality itself is a developmentally plastic trait. If, however, the environment does not impact among-individual variation, this suggests that individuality is determined before birth. We continuously tracked the behavior of genetically identical fish (Amazon mollies, Poecilia formosa), reared with or without predation stress, from birth through their first month of life. Predation shifted mean-level behaviors, with predator-exposed individuals swimming more slowly and spending more time near their refuges. However, the magnitude of individuality (as evidenced by repeatability) increased similarly over development in both treatments, indicating that individuality crystallizes robustly over time, even under stress and in a vacuum of genetic variation. Predator-reared fish also exhibited greater within-individual variability in refuge use, suggesting increased behavioral flexibility or disrupted developmental canalization in response to stress. Surprisingly, maternal identity, but not maternal behavior, was the strongest predictor of swimming speed, pointing to non-behavioral maternal effects as a key pre-birth source of behavioral variation. Refuge use however was not at all predicted by maternal identity, indicating that major fitness-related behaviors can have entirely different developmental mechanisms. Collectively, we show that individuality persists despite environmental stress and is seeded before birth through non-genetic factors. Even in the face of a shared environmental challenge, the behavioral trajectories of individuals are unique. 
                        more » 
                        « less   
                    
                            
                            Cascading indirect genetic effects in a clonal vertebrate
                        
                    
    
            Understanding how individual differences arise and how their effects propagate through groups are fundamental issues in biology. Individual differences can arise from indirect genetic effects (IGE): genetically based variation in the conspecifics with which an individual interacts. Using a clonal species, the Amazon molly ( Poecilia formosa ), we test the hypothesis that IGE can propagate to influence phenotypes of the individuals that do not experience them firsthand. We tested this by exposing genetically identical Amazon mollies to conspecific social partners of different clonal lineages, and then moving these focal individuals to new social groups in which they were the only member to have experienced the IGE. We found that genetically different social environments resulted in the focal animals experiencing different levels of aggression, and that these IGE carried over into new social groups to influence the behaviour of naive individuals. These data reveal that IGE can cascade beyond the individuals that experience them. Opportunity for cascading IGE is ubiquitous, especially in species with long-distance dispersal or fission–fusion group dynamics. Cascades could amplify (or mitigate) the effects of IGE on trait variation and on evolutionary trajectories. Expansion of the IGE framework to include cascading and other types of carry-over effects will therefore improve understanding of individual variation and social evolution and allow more accurate prediction of population response to changing environments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1740466
- PAR ID:
- 10406959
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1978
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Differences in snake venom composition occur across all taxonomic levels and it has been argued that this variation represents an adaptation that has evolved to facilitate the capture and digestion of prey and evasion of predators. Bothrops atrox is a terrestrial pitviper that is distributed across the Amazon region, where it occupies different habitats. Using statistical analyses and functional assays that incorporate individual variation, we analyzed the individual venom variability in B. atrox snakes from four different habitats (forest, pasture, degraded area, and floodplain) in and around the Amazon River in Brazil. We observed venom differentiation between spatially distinct B. atrox individuals from the different habitats, with venom variation due to both common (high abundance) and rare (low abundance) proteins. Moreover, differences in the composition of the venoms resulted in individual variability in functionality and heterogeneity in the lethality to mammals and birds, particularly among the floodplain snakes. Taken together, the data obtained from individual venoms of B. atrox snakes, captured in different habitats from the Brazilian Amazon, support the hypothesis that the differential distribution of protein isoforms results in functional distinctiveness and the ability of snakes with different venoms to have variable toxic effects on different prey.more » « less
- 
            Abstract Recent evidence indicates that individual behavioural variation in animals, defined as consistent individual differences in behaviour across contexts and time, influence ecological and evolutionary processes, and a growing number of studies demonstrate that individual behavioural variation can play a large role in shaping grouping dynamics among social animals. We studied the common degu,Octodon degus, a social rodent, to evaluate whether individual behavioural variation underlies social organization and the reproductive success of individuals within groups. We examined social groups in a population in central-north Chile during one breeding season, tested 67 adults in an open field test (i.e., the propensity to explore an unfamiliar environment) and 62 adults in a poke test (i.e., the propensity to charge an object) to quantify individual behavioural variation, determined assortment based on individual behavioural differences across 19 social groups, and performed genetic analyses to assess reproductive success. We found that the response to the poke test was repeatable, while none of the behaviours from an open field test were. The repeatable behaviour during the poke test was not associated to components of social organization (group composition), or to reproductive success. These findings imply that individual behavioural variation did not affect grouping patterns or direct fitness in this degu population.more » « less
- 
            Understanding the molecular mechanisms that underlie snake venom variability provides important clues for understanding how the biological functions of this powerful toxic arsenal evolve. Here we analyzed in detail individual transcripts and venom protein isoforms produced by five specimens of a venomous snake (Bothrops atrox) from two nearby but genetically distinct populations from the Brazilian Amazon rainforest showing functional similarities in venom properties. Individual variation was observed among the venoms of these specimens, but the overall abundance of each general toxin family was conserved both in transcripts and in venom protein levels. However, when expression of independent paralogues was analyzed, remarkable differences were observed within and among each toxin group both between individuals and between populations. Transcripts for functionally essential venom proteins (“housekeeping” proteins) are highly expressed in all specimens and show similar transcription/translation rates. In contrast, other paralogues show lower expression levels and the toxins they code for vary among different individuals. These results provide support for the idea that that expression and translational differences play a greater role in defining adaptive variation in venom phenotypes than does sequence variation in protein coding genes and that convergent adaptive venom phenotypes can be generated through different molecular mechanisms.more » « less
- 
            Sick individuals do not all respond to an infection in the same way. One individual may experience mild symptoms and recover easily, while another may suffer devastating illness or even death. A number of factors are often assumed to account for these differences, including the sex, age and genes of the individuals, and differences in the environments the individuals have been exposed to. However, random variations in how an individual’s immune system interacts with the infection could also play an important role in recovery. Duneau et al. have now studied how genetically identical fruit flies who were raised in the same environment respond to different bacterial infections. This enabled them to develop a mathematical model that describes how a bacterial infection develops in an individual. In an initial phase, the bacteria proliferate freely. If the immune defenses activate in time to control the infection, the number of bacteria in the fly decreases to a constant level and the infection enters a long-term, or chronic, phase. The sooner this happens the more likely it is that the fly will survive. If the immune control happens too late, the infection enters a terminal phase and the fly will die once the number of bacteria increases to a certain level. The model therefore reveals that the precise time at which the immune system takes control of the bacterial population – termed the “Time to Control” – determines the outcome of the infection. Duneau et al. confirmed this by injecting bacteria into identical flies. A small variation in the Time to Control was sometimes the difference between a fly living or dying. Understanding what controls this apparently random variation is key to understanding infection and potentially developing more efficient treatments for a wide range of diseases – not just those caused by bacteria, but also those caused by viruses and parasites, like HIV and malaria.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    