skip to main content

This content will become publicly available on April 14, 2024

Title: Operando Interaction and Transformation of Metastable Defects in Layered Oxides for Na‐Ion Batteries

Non‐equilibrium defects often dictate the macroscopic properties of materials. They largely define the reversibility and kinetics of processes in intercalation hosts in rechargeable batteries. Recently, imaging methods have demonstrated that transient dislocations briefly appear in intercalation hosts during ion diffusion. Despite new discoveries, the understanding of impact, formation and self‐healing mechanisms of transient defects, including and beyond dislocations, is lacking. Here, operando X‐ray Bragg Coherent Diffractive Imaging (BCDI) and diffraction peak analysis capture the stages of formation of a unique metastable domain boundary, defect self‐healing, and resolve the local impact of defects on ionic diffusion in NaxNi1−yMnyO2intercalation hosts in a charging sodium‐ion battery. Results, applicable to a wide range of layered intercalation materials due to the shared nature of framework layers, elucidate new dynamics of transient defects and their connection to macroscopic properties, and suggest how to control the nanostructure dynamics.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vanadium multiredox‐based NASICON‐NazV2−yMy(PO4)3(3 ≤z ≤ 4; M = Al3+, Cr3+, and Mn2+) cathodes are particularly attractive for Na‐ion battery applications due to their high Na insertion voltage (>3.5 V vs Na+/Na0), reversible storage capacity (≈150 mA h g−1), and rate performance. However, their practical application is hindered by rapid capacity fade due to bulk structural rearrangements at high potentials involving complex redox and local structural changes. To decouple these factors, a series of Mg2+‐substituted Na3+yV2−yMgy(PO4)3(0 ≤y ≤ 1) cathodes is studied for which the only redox‐active species is vanadium. While X‐ray diffraction (XRD) confirms the formation of solid solutions between they = 0 and 1 end members, X‐ray absorption spectroscopy and solid‐state nuclear magnetic resonance reveal a complex evolution of the local structure upon progressive Mg2+substitution for V3+. Concurrently, the intercalation voltage rises from 3.35 to 3.45 V, due to increasingly more ionic VO bonds, and the sodium (de)intercalation mechanism transitions from a two‐phase fory ≤ 0.5 to a solid solution process fory ≥ 0.5, as confirmed by in operando XRD, while Na‐ion diffusion kinetics follow a nonlinear trend across the compositional series.

    more » « less
  2. Abstract

    Crystallographic defects exist in many redox active energy materials, e.g., battery and catalyst materials, which significantly alter their chemical properties for energy storage and conversion. However, there is lack of quantitative understanding of the interrelationship between crystallographic defects and redox reactions. Herein, crystallographic defects, such as geometrically necessary dislocations, are reported to influence the redox reactions in battery particles through single‐particle, multimodal, and in situ synchrotron measurements. Through Laue X‐ray microdiffraction, many crystallographic defects are spatially identified and statistically quantified from a large quantity of diffraction patterns in many layered oxide particles, including geometrically necessary dislocations, tilt boundaries, and mixed defects. The in situ and ex situ measurements, combining microdiffraction and X‐ray spectroscopy imaging, reveal that LiCoO2particles with a higher concentration of geometrically necessary dislocations provide deeper charging reactions, indicating that dislocations may facilitate redox reactions in layered oxides during initial charging. The present study illustrates that a precise control of crystallographic defects and their distribution can potentially promote and homogenize redox reactions in battery materials.

    more » « less
  3. Abstract

    Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.

    more » « less
  4. The development of anode materials with high-rate capability is critical to high-power lithium batteries. T-Nb 2 O 5 has been widely reported to exhibit pseudocapacitive behavior and fast lithium storage capability. However, the other polymorphs of Nb 2 O 5 prepared at higher temperatures have the potential to achieve even higher specific capacity and tap density than T-Nb 2 O 5 , offering higher volumetric power and energy density. Here, micrometer-sized H-Nb 2 O 5 with rich Wadsley planar defects (denoted as d-H-Nb 2 O 5 ) is designed for fast lithium storage. The performance of H-Nb 2 O 5 with local rearrangements of [NbO 6 ] octahedra blocks surpasses that of T-Nb 2 O 5 in terms of specific capacity, rate capability, and stability. A wide range variation in the valence of niobium ions upon lithiation was observed for defective H-Nb 2 O 5 via operando X-ray absorption spectroscopy. Operando extended X-ray absorption fine structure and ex situ Raman spectroscopy analyses reveal a large and reversible distortion of the structure in the two-phase region. Computation and ex situ X-ray diffraction analysis reveal that the shear structure expands along major lithium diffusion pathways and contracts in the direction perpendicular to the shear plane. Planar defects relieve strain through perpendicular arrangements of blocks, minimizing volume change and enhancing structural stability. In addition, strong Li adsorption on planar defects enlarges intercalation capacity. Different from nanostructure engineering, our strategy to modify the planar defects in the bulk phase can effectively improve the intrinsic properties. The findings in this work offer new insights into the design of fast Li-ion storage materials in micrometer sizes through defect engineering, and the strategy is applicable to the material discovery for other energy-related applications. 
    more » « less
  5. Abstract

    Although dipolar forces between copolymer chains are relatively weak, they result in ubiquitous inter‐ and/or intramolecular interactions which are particularly critical in achieving the mechanical integrity of polymeric materials. In this study, a route is developed to obtain self‐healable properties in thermoplastic copolymers that rely on noncovalent dipolar interactions present in essentially all macromolecules and particularly fluorine‐containing copolymers. The combination of dipolar interactions between C─F and C═O bonds as well as CH2/CH3entities facilitates self‐healing without external intervention. The presence of dipole‐dipole, dipole‐induced dipole, and induced‐dipole induced dipole interactions leads to a viscoelastic response that controls macroscopic autonomous multicycle self‐healing of fluorinated copolymers under ambient conditions. Energetically favorable dipolar forces attributed to monomer sequence and monomer molar ratios induces desirable copolymer tacticities, enabling entropic energy recovery stored during mechanical damage. The use of dipolar forces instead of chemical or physical modifications not only eliminates additional alternations enabling multiple damage‐repair cycles but also provides further opportunity for designing self‐healable commodity thermoplastics. These materials may offer numerous applications, ranging from the use in electronics, ion batteries, H2fuel dispense hoses to self‐healable pet toys, packaging, paints and coatings, and many others.

    more » « less