skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural variation underlies functional diversity at methyl salicylate loci in tomato
Methyl salicylate is an important inter- and intra-plant signaling molecule, but is deemed undesirable by humans when it accumulates to high levels in ripe fruits. Balancing the tradeoff between consumer satisfaction and overall plant health is challenging as the mechanisms regulating volatile levels have not yet been fully elucidated. In this study, we investigated the accumulation of methyl salicylate in ripe fruits of tomatoes that belong to the red-fruited clade. We determine the genetic diversity and the interaction of four known loci controlling methyl salicylate levels in ripe fruits. In addition to Non-Smoky Glucosyl Transferase 1 (NSGT1), we uncovered extensive genome structural variation (SV) at the Methylesterase (MES) locus. This locus contains four tandemly duplicated Methylesterase genes and genome sequence investigations at the locus identified nine distinct haplotypes. Based on gene expression and results from biparental crosses, functional and non-functional haplotypes for MES were identified. The combination of the non-functional MES haplotype 2 and the non-functional NSGT1 haplotype IV or V in a GWAS panel showed high methyl salicylate levels in ripe fruits, particularly in accessions from Ecuador, demonstrating a strong interaction between these two loci and suggesting an ecological advantage. The genetic variation at the other two known loci, Salicylic Acid Methyl Transferase 1 (SAMT1) and tomato UDP Glycosyl Transferase 5 (SlUGT5), did not explain volatile variation in the red-fruited tomato germplasm, suggesting a minor role in methyl salicylate production in red-fruited tomato. Lastly, we found that most heirloom and modern tomato accessions carried a functional MES and a non-functional NSGT1 haplotype, ensuring acceptable levels of methyl salicylate in fruits. Yet, future selection of the functional NSGT1 allele could potentially improve flavor in the modern germplasm.  more » « less
Award ID(s):
2151032 1732253 1564366
PAR ID:
10407388
Author(s) / Creator(s):
Editor(s):
Nathan Springer
Date Published:
Journal Name:
PLOS genetics
ISSN:
1553-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Methyl salicylate imparts a potent flavor and aroma described as medicinal and wintergreen that is undesirable in tomato (Solanum lycopersicum) fruit. Plants control the quantities of methyl salicylate through a variety of biosynthetic pathways, including the methylation of salicylic acid to form methyl salicylate and subsequent glycosylation to prevent methyl salicylate emission. Here, we identified a subclade of tomato methyl esterases, SALICYLIC ACID METHYL ESTERASE1-4, responsible for demethylation of methyl salicylate to form salicylic acid in fruits. This family was identified by proximity to a highly significant methyl salicylate genome-wide association study locus on chromosome 2. Genetic mapping studies in a biparental population confirmed a major methyl salicylate locus on chromosome 2. Fruits from SlMES1 knockout lines emitted significantly (P < 0,05, t test) higher amounts of methyl salicylate than wild-type fruits. Double and triple mutants of SlMES2, SlMES3, and SlMES4 emitted even more methyl salicylate than SlMES1 single knockouts—but not at statistically distinguishable levels—compared to the single mutant. Heterologously expressed SlMES1 and SlMES3 acted on methyl salicylate in vitro, with SlMES1 having a higher affinity for methyl salicylate than SlMES3. The SlMES locus has undergone major rearrangement, as demonstrated by genome structure analysis in the parents of the biparental population. Analysis of accessions that produce high or low levels of methyl salicylate showed that SlMES1 and SlMES3 genes expressed the highest in the low methyl salicylate lines. None of the MES genes were appreciably expressed in the high methyl salicylate-producing lines. We concluded that the SlMES gene family encodes tomato methyl esterases that convert methyl salicylate to salicylic acid in ripe tomato fruit. Their ability to decrease methyl salicylate levels by conversion to salicylic acid is an attractive breeding target to lower the level of a negative contributor to flavor. 
    more » « less
  2. null (Ed.)
    Fruit flavor is defined as the perception of the food by the olfactory and gustatory systems, and is one of the main determinants of fruit quality. Tomato flavor is largely determined by the balance of sugars, acids and volatile compounds. Several genes controlling the levels of these metabolites in tomato fruit have been cloned, including LIN5 , ALMT9 , AAT1 , CXE1 , and LoxC . The aim of this study was to identify any association of these genes with trait variation and to describe the genetic diversity at these loci in the red-fruited tomato clade comprised of the wild ancestor Solanum pimpinellifolium , the semi-domesticated species Solanum lycopersicum cerasiforme and early domesticated Solanum lycopersicum . High genetic diversity was observed at these five loci, including novel haplotypes that could be incorporated into breeding programs to improve fruit quality of modern tomatoes. Using newly available high-quality genome assemblies, we assayed each gene for potential functional causative polymorphisms and resolved a duplication at the LoxC locus found in several wild and semi-domesticated accessions which caused lower accumulation of lipid derived volatiles. In addition, we explored gene expression of the five genes in nine phylogenetically diverse tomato accessions. In general, the expression patterns of these genes increased during fruit ripening but diverged between accessions without clear relationship between expression and metabolite levels. 
    more » « less
  3. Abstract PremiseThe scents of volatile organic compounds (VOCs) are an important component of ripe fleshy fruit attractiveness, yet their variation across closely related wild species is poorly understood. Phylogenetic patterns in these compounds and their biosynthetic pathways offer insight into the evolutionary drivers of fruit diversity, including whether scent can communicate an honest signal of nutrient content to animal dispersers. We assessed ripe fruit VOC content across the tomato clade (Solanumsect.Lycopersicon), with implications for crop improvement since these compounds are key components of tomato flavor. MethodsWe analyzed ripe fruit volatiles from 13 species of wild tomato grown in a common garden. Interspecific variations in 66 compounds and their biosynthetic pathways were assessed in 32 accessions, and an accession‐level phylogeny was constructed to account for relatedness. ResultsWild tomato species can be differentiated by their VOCs, withSolanum pennelliinotably distinct. Phylogenetic conservatism exists to a limited extent. Major cladewide patterns corresponded to divergence of the five brightly colored‐fruited species from the nine green‐fruited species, particularly for nitrogen‐containing compounds (higher in colored‐fruited) and esters (higher in green‐fruited), the latter appearing to signal a sugar reward. ConclusionsWe established a framework for fruit scent evolution studies in a crop wild relative system, showing that each species in the tomato clade has a unique VOC profile. Differences between color groups align with fruit syndromes that could be driven by selection from frugivores. The evolution of colored fruits was accompanied by changes in biosynthetic pathways for esters and nitrogen‐containing compounds, volatiles important to tomato flavor. 
    more » « less
  4. SUMMARY The unique flavors of different fruits depend upon complex blends of soluble sugars, organic acids, and volatile organic compounds. 2‐Phenylethanol and phenylacetaldehyde are major contributors to flavor in many foods, including tomato. In the tomato fruit, glucose, and fructose are the chemicals that most positively contribute to human flavor preferences. We identified a gene encoding a tomato aldo/keto reductase,Sl‐AKR9, that is associated with phenylacetaldehyde and 2‐phenylethanol contents in fruits. Two distinct haplotypes were identified; one encodes a chloroplast‐targeted protein while the other encodes a transit peptide‐less protein that accumulates in the cytoplasm. Sl‐AKR9 effectively catalyzes reduction of phenylacetaldehyde to 2‐phenylethanol. The enzyme can also metabolize sugar‐derived reactive carbonyls, including glyceraldehyde and methylglyoxal. CRISPR‐Cas9‐induced loss‐of‐function mutations inSl‐AKR9significantly increased phenylacetaldehyde and lowered 2‐phenylethanol content in ripe fruit. Reduced fruit weight and increased soluble solids, glucose, and fructose contents were observed in the loss‐of‐function fruits. These results reveal a previously unidentified mechanism affecting two flavor‐associated phenylalanine‐derived volatile organic compounds, sugar content, and fruit weight. Modern varieties of tomato almost universally contain the haplotype associated with larger fruit, lower sugar content, and lower phenylacetaldehyde and 2‐phenylethanol, likely leading to flavor deterioration in modern varieties. 
    more » « less
  5. Tomato ( Solanum lycopersicum ) produces a wide range of volatile chemicals during fruit ripening, generating a distinct aroma and contributing to the overall flavor. Among these volatiles are several aromatic and aliphatic nitrogen-containing compounds for which the biosynthetic pathways are not known. While nitrogenous volatiles are abundant in tomato fruit, their content in fruits of the closely related species of the tomato clade is highly variable. For example, the green-fruited species Solanum pennellii are nearly devoid, while the red-fruited species S. lycopersicum and Solanum pimpinellifolium accumulate high amounts. Using an introgression population derived from S. pennellii , we identified a locus essential for the production of all the detectable nitrogenous volatiles in tomato fruit. Silencing of the underlying gene ( SlTNH1 ; Solyc12g013690 ) in transgenic plants abolished production of aliphatic and aromatic nitrogenous volatiles in ripe fruit, and metabolomic analysis of these fruit revealed the accumulation of 2-isobutyl-tetrahydrothiazolidine-4-carboxylic acid, a known conjugate of cysteine and 3-methylbutanal. Biosynthetic incorporation of stable isotope-labeled precursors into 2-isobutylthiazole and 2-phenylacetonitrile confirmed that cysteine provides the nitrogen atom for all nitrogenous volatiles in tomato fruit. Nicotiana benthamiana plants expressing SlTNH1 readily transformed synthetic 2-substituted tetrahydrothiazolidine-4-carboxylic acid substrates into a mixture of the corresponding 2-substituted oxime, nitro, and nitrile volatiles. Distinct from other known flavin-dependent monooxygenase enzymes in plants, this tetrahydrothiazolidine-4-carboxylic acid N -hydroxylase catalyzes sequential hydroxylations. Elucidation of this pathway is a major step forward in understanding and ultimately improving tomato flavor quality. 
    more » « less