skip to main content

Title: The physical origin of dark energy constraints from rubin observatory and CMB-S4 lensing tomography

We seek to clarify the origin of constraints on the dark energy equation of state parameter from CMB lensing tomography, that is the combination of galaxy clustering and the cross-correlation of galaxies with CMB lensing in a number of redshift bins. We focus on the analytic understanding of the origin of the constraints. Dark energy information in these data arises from the influence of three primary relationships: distance as a function of redshift (geometry), the amplitude of the power spectrum as a function of redshift (growth), and the power spectrum as a function of wavenumber (shape). We find that the effects from geometry and growth play a significant role and partially cancel each other out, while the shape effect is unimportant. We also show that Dark Energy Task Force figure of merit forecasts from the combination of LSST galaxies and CMB-S4 lensing are comparable to the forecasts from cosmic shear in the absence of the CMB lensing map, thus providing an important independent check. Compared to the forecasts with the LSST galaxies alone, combining CMB lensing and LSST clustering information increases the FoM by roughly a factor of 3–4 in the optimistic scenario where systematics are fully under control. We caution more » that achieving these forecasts will likely require a full analysis of higher-order biasing, photometric redshift uncertainties, and stringent control of other systematic limitations, which are outside the scope of this work, whose primary purpose is to elucidate the physical origin of the constraints.

« less
; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 1887-1894
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    We present a novel simulation-based cosmological analysis of galaxy–galaxy lensing and galaxy redshift-space clustering. Compared to analysis methods based on perturbation theory, our simulation-based approach allows us to probe a much wider range of scales, $0.4 \, h^{-1} \, \mathrm{Mpc}$ to $63 \, h^{-1} \, \mathrm{Mpc}$, including highly non-linear scales, and marginalizes over astrophysical effects such as assembly bias. We apply this framework to data from the Baryon Oscillation Spectroscopic Survey LOWZ sample cross-correlated with state-of-the-art gravitational lensing catalogues from the Kilo Degree Survey and the Dark Energy Survey. We show that gravitational lensing and redshift-space clustering when analysed over a large range of scales place tight constraints on the growth-of-structure parameter $S_8 = \sigma _8 \sqrt{\Omega _{\rm m} / 0.3}$. Overall, we infer S8 = 0.792 ± 0.022 when analysing the combination of galaxy–galaxy lensing and projected galaxy clustering and S8 = 0.771 ± 0.027 for galaxy redshift-space clustering. These findings highlight the potential constraining power of full-scale studies over studies analysing only large scales and also showcase the benefits of analysing multiple large-scale structure surveys jointly. Our inferred values for S8 fall below the value inferred from the CMB, S8 = 0.834 ± 0.016. While this difference is not statistically significant by itself, our results mirrormore »other findings in the literature whereby low-redshift large-scale structure probes infer lower values for S8 than the CMB, the so-called S8-tension.

    « less
  2. Abstract An observational program focused on the high redshift (2

    We present cosmological parameter constraints based on a joint modelling of galaxy–lensing cross-correlations and galaxy clustering measurements in the SDSS, marginalizing over small-scale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $\sim 2{{\ \rm per\ cent}}$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results to the measurements using galaxy samples from BOSS and lensing measurements using shear from SDSS galaxies and CMB lensing from Planck, with conservative scale cuts, we obtain $S_8\equiv \left(\frac{\sigma _8}{0.8228}\right)^{0.8}\left(\frac{\Omega _\mathrm{ m}}{0.307}\right)^{0.6}=0.85\pm 0.05$ (stat.) using LOWZ × SDSS galaxy lensing, and S8 = 0.91 ± 0.1 (stat.) using combination of LOWZ and CMASS × Planck CMB lensing. We estimate the systematic uncertainty in the galaxy–galaxy lensing measurements to be $\sim 6{{\ \rm per\ cent}}$ (dominated by photometric redshift uncertainties) and in the galaxy–CMB lensing measurements to be $\sim 3{{\ \rm per\ cent}}$, from small-scale modelling uncertainties including baryonic physics.


    The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey. In this paper, we demonstrate the feasibility of adopting DMASS as the equivalent of CMASS for a joint analysis of DES and BOSS in the framework of modified gravity. We utilize the angular clustering of the DMASS galaxies, cosmic shear of the DES metacalibration sources, and cross-correlation of the two as data vectors. By jointly fitting the combination of the data with the RSD measurements from the CMASS sample and Planck data, we obtain the constraints on modified gravity parameters $\mu _0=-0.37^{+0.47}_{-0.45}$ and $\Sigma _0=0.078^{+0.078}_{-0.082}$. Our constraints of modified gravity with DMASS are tighter than those with the DES Year 1 redMaGiC sample with the same external data sets by 29 per cent for μ0 and 21 per cent for Σ0, and comparable to the published results of the DES Year 1 modified gravity analysis despite this work using fewer external data sets. This improvement is mainly because the galaxy bias parameter is shared and more tightly constrained by both CMASS and DMASS, effectivelymore »breaking the degeneracy between the galaxy bias and other cosmological parameters. Such an approach to optimally combine photometric and spectroscopic surveys using a photometric sample equivalent to a spectroscopic sample can be applied to combining future surveys having a limited overlap such as DESI and LSST.

    « less
  5. ABSTRACT Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and test theories of modified gravity. We detect a cross-correlation between Dark Energy Spectroscopic Instrument (DESI)-like luminous red galaxies (LRGs) selected from DECam Legacy Survey imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of S/N = 27.2 over scales ℓmin = 30, ℓmax = 1000. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faint limit as s = 0.999 ± 0.015, and find corresponding corrections of the order of a few per cent for $C^{\kappa g}_{\ell }, C^{gg}_{\ell }$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation zeff ≈ 0.68 using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at zeff. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methodsmore »show excellent agreement with each other and with DESI survey expectations.« less