skip to main content


Title: Estrous Cycle Mediates Midbrain Neuron Excitability Altering Social Behavior upon Stress

The estrous cycle is a potent modulator of neuron physiology. In rodents,in vivoventral tegmental area (VTA) dopamine (DA) activity has been shown to fluctuate across the estrous cycle. Although the behavioral effect of fluctuating sex steroids on the reward circuit is well studied in response to drugs of abuse, few studies have focused on the molecular adaptations in the context of stress and motivated social behaviors. We hypothesized that estradiol fluctuations across the estrous cycle acts on the dopaminergic activity of the VTA to alter excitability and stress response. We used whole-cell slice electrophysiology of VTA DA neurons in naturally cycling, adult female C57BL/6J mice to characterize the effects of the estrous cycle and the role of 17β-estradiol on neuronal activity. We show that the estrous phase alters the effect of 17β-estradiol on excitability in the VTA. Behaviorally, the estrous phase during a series of acute variable social stressors modulates subsequent reward-related behaviors. Pharmacological inhibition of estrogen receptors in the VTA before stress during diestrus mimics the stress susceptibility found during estrus, whereas increased potassium channel activity in the VTA before stress reverses stress susceptibility found during estrus as assessed by social interaction behavior. This study identifies one possible potassium channel mechanism underlying the increased DA activity during estrus and reveals estrogen-dependent changes in neuronal function. Our findings demonstrate that the estrous cycle and estrogen signaling changes the physiology of DA neurons resulting in behavioral differences when the reward circuit is challenged with stress.

SIGNIFICANCE STATEMENTThe activity of the ventral tegmental area encodes signals of stress and reward. Dopaminergic activity has been found to be regulated by both local synaptic inputs as well as inputs from other brain regions. Here, we provide evidence that cycling sex steroids also play a role in modulating stress sensitivity of dopaminergic reward behavior. Specifically, we reveal a correlation of ionic activity with estrous phase, which influences the behavioral response to stress. These findings shed new light on how estrous cycle may influence dopaminergic activity primarily during times of stress perturbation.

 
more » « less
NSF-PAR ID:
10407502
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.1523
Date Published:
Journal Name:
The Journal of Neuroscience
Volume:
43
Issue:
5
ISSN:
0270-6474
Page Range / eLocation ID:
p. 736-748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The survival of an organism is dependent on its ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the NAc is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase(TH)-CreLong Evans rats, it was found that, under baseline conditions, ∼84% ofTH-Crerats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCutTMrevealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient toward and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues.

    SIGNIFICANCE STATEMENTActivity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCutTMrevealed that cue-directed behaviors do not emerge without dopamine neuron activity in the VTA. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of dopamine neuron activity in the VTA during cue presentation to encode the incentive value of reward cues.

     
    more » « less
  2. Motivation is a powerful driver of learning and memory. Functional MRI studies show that interactions among the dopaminergic midbrain substantia nigra/ventral tegmental area (SN/VTA), hippocampus, and nucleus accumbens (NAc) are critical for motivated memory encoding. However, it is not known whether these effects are transient and purely functional, or whether individual differences in the structure of this circuit underlie motivated memory encoding. To quantify individual differences in structure, diffusion-weighted MRI and probabilistic tractography were used to quantify SN/VTA–striatum and SN/VTA–hippocampus pathways associated with motivated memory encoding in humans. Male and female participants completed a motivated source memory paradigm. During encoding, words were randomly assigned to one of three conditions, reward ($1.00), control ($0.00), or punishment (−$1.00). During retrieval, participants were asked to retrieve item and source information of the previously studied words and were rewarded or penalized according to their performance. Source memory for words assigned to both reward and punishment conditions was greater than those for control words, but there were no differences in item memory based on value. Anatomically, probabilistic tractography results revealed a heterogeneous, topological arrangement of the SN/VTA. Tract density measures of SN/VTA–hippocampus pathways were positively correlated with individual differences in reward-and-punishment-modulated memory performance, whereas density of SN/VTA–striatum pathways showed no association. This novel finding suggests that pathways emerging from the human SV/VTA are anatomically separable and functionally heterogeneous. Individual differences in structural connectivity of the dopaminergic hippocampus–VTA loop are selectively associated with motivated memory encoding.

    SIGNIFICANCE STATEMENTFunctional MRI studies show that interactions among the SN/VTA, hippocampus, and NAc are critical for motivated memory encoding. This has led to competing theories that posit either SN/VTA–NAc reward prediction errors or SN/VTA–hippocampus signals underlie motivated memory encoding. Additionally, it is not known whether these effects are transient and purely functional or whether individual differences in the structure of these circuits underlie motivated memory encoding. Using diffusion-weighted MRI and probabilistic tractography, we show that tract density measures of SN/VTA–hippocampus pathways are positively correlated with motivated memory performance, whereas density of SN/VTA–striatum pathways show no association. This finding suggests that anatomic individual differences of the dopaminergic hippocampus–VTA loop are selectively associated with motivated memory encoding.

     
    more » « less
  3. echnical innovation in neuroscience introduced powerful tools for measuring and manipulating neuronal activity via optical, chemogenetic, and calcium-imaging tools. These tools were initially tested primarily in male animals but are now increasingly being used in females as well. In this review, we consider how these tools may work differently in males and females. For example, we review sex differences in the metabolism of chemogenetic ligands and their downstream signaling effects. Optical tools more directly alter depolarization or hyperpolarization of neurons, but biological sex and gonadal hormones modulate synaptic inputs and intrinsic excitability. We review studies demonstrating that optogenetic manipulations are sometimes consistent across the rodent estrous cycle but within certain circuits; manipulations can vary across the ovarian cycle. Finally, calcium-imaging methods utilize genetically encoded calcium indicators to measure neuronal activity. Testosterone and estradiol can directly modulate calcium influx, and we consider these implications for interpreting the results of calcium-imaging studies. Together, our findings suggest that these neuroscientific tools may sometimes work differently in males and females and that users should be aware of these differences when applying these methods. 
    more » « less
  4. Abstract

    The application of behavioral economic demand theory in addiction science has proved useful for evaluating individual characteristics underlying abuse liability. Two factors that have received comparably little attention within this literature are sex and gonadal hormones. We determined cocaine and remifentanil demand in male and female rats using a within‐session procedure. Cocaine and remifentanil demand were evaluated for 15 consecutive days using a balanced, crossover design that randomized drug order. This design allowed for the evaluation of temporal and exposure effects on two independent dimensions of demand, unconstrained demand (Q0) and demand elasticity (α). Estrous cyclicity was tracked to determine the contribution of phase to demand. No overall sex differences were observed. Increased unconstrained demand for cocaine and remifentanil was observed in females during periods in which estrogen was high (eg, estrus phase). Unconstrained remifentanil demand escalated over the 15‐day testing period, but escalation was not observed for cocaine or for demand elasticity. A significant exposure effect was also observed in which greater prior remifentanil intake increased unconstrained cocaine demand and reduced cocaine demand elasticity. These effects were directionally specific as no significant effects of prior cocaine exposure were observed on remifentanil demand measures. These data suggest that unconstrained demand and demand elasticity do not differ between male and female subjects; however, that unconstrained demand is associated with estrous cyclicity. These findings also suggest that opioid exposure enhances subsequent demand for psychomotor stimulants, which may be important when considering recent increases in nonmedical prescription opioid use in the United States.

     
    more » « less
  5. Abstract

    Many animal species exhibit year‐round aggression, a behaviour that allows individuals to compete for limited resources in their environment (eg, food and mates). Interestingly, this high degree of territoriality persists during the non‐breeding season, despite low levels of circulating gonadal steroids (ie, testosterone [T] and oestradiol [E2]). Our previous work suggests that the pineal hormone melatonin mediates a ‘seasonal switch’ from gonadal to adrenal regulation of aggression in Siberian hamsters (Phodopus sungorus); solitary, seasonally breeding mammals that display increased aggression during the short, ‘winter‐like’ days (SDs) of the non‐breeding season. To test the hypothesis that melatonin elevates non‐breeding aggression by increasing circulating and neural steroid metabolism, we housed female hamsters in long days (LDs) or SDs, administered them timed or mis‐timed melatonin injections (mimic or do not mimic a SD‐like signal, respectively), and measured aggression, circulating hormone profiles and aromatase (ARO) immunoreactivity in brain regions associated with aggressive or reproductive behaviours (paraventricular hypothalamic nucleus [PVN], periaqueductal gray [PAG] and ventral tegmental area [VTA]). Females that were responsive to SD photoperiods (SD‐R) and LD females given timed melatonin injections (Mel‐T) exhibited gonadal regression and reduced circulating E2, but increased aggression and circulating dehydroepiandrosterone (DHEA). Furthermore, aggressive challenges differentially altered circulating hormone profiles across seasonal phenotypes; reproductively inactive females (ie, SD‐R and Mel‐T females) reduced circulating DHEA and T, but increased E2after an aggressive interaction, whereas reproductively active females (ie, LD females, SD non‐responder females and LD females given mis‐timed melatonin injections) solely increased circulating E2. Although no differences in neural ARO abundance were observed, LD and SD‐R females showed distinct associations between ARO cell density and aggressive behaviour in the PVN, PAG and VTA. Taken together, these results suggest that melatonin increases non‐breeding aggression by elevating circulating steroid metabolism after an aggressive encounter and by regulating behaviourally relevant neural circuits in a region‐specific manner.

     
    more » « less