Recent excavation in the new CRREL Permafrost Tunnel in Fox, Alaska provides a unique opportunity to study properties of Yedoma — late Pleistocene ice- and organic-rich syngenetic permafrost. Yedoma has been described at numerous sites across Interior Alaska, mainly within the Yukon-Tanana upland. The most comprehensive data on the structure and properties of Yedoma in this area have been obtained in the CRREL Permafrost Tunnel near Fairbanks — one of the most accessible large-scale exposures of Yedoma permafrost on Earth, which became available to researchers in the mid-1960s. Expansion of the new ∼4-m-high and ∼4-m-wide linear excavations, started in 2011 and ongoing, exposes an additional 300 m of well-preserved Yedoma and provides access to sediments deposited over the past 40,000 years, which will allow us to quantify rates and patterns of formation of syngenetic permafrost, depositional history and biogeochemical characteristics of Yedoma, and its response to a warmer climate. In this paper, we present results of detailed cryostratigraphic studies in the Tunnel and adjacent area. Data from our study include ground-ice content, the stable water isotope composition of the variety of ground-ice bodies, and radiocarbon age dates. Based on cryostratigraphic mapping of the Tunnel and results of drilling above and inside the Tunnel, six main cryostratigraphic units have been distinguished: 1) active layer; 2) modern intermediate layer (ice-rich silt); 3) relatively ice-poor Yedoma silt reworked by thermal erosion and thermokarst during the Holocene; 4) ice-rich late Pleistocene Yedoma silt with large ice wedges; 5) relatively ice-poor fluvial gravel; and 6) ice-poor bedrock. Our studies reveal significant differences in cryostratigraphy of the new and old CRREL Permafrost Tunnel facilities. Original syngenetic permafrost in the new Tunnel has been better preserved and less affected by erosional events during the period of Yedoma formation, although numerous features (e.g., bodies of thermokarst-cave ice, thaw unconformities, buried gullies) indicate the original Yedoma silt in the recently excavated sections was also reworked to some extent by thermokarst and thermal erosion during the late Pleistocene and Holocene.
more »
« less
Hillslope erosional features and permafrost dynamics along infrastructure in the Arctic Foothills, Alaska
Abstract Abrupt thaw of ice‐rich permafrost in the Arctic Foothills yielded to the formation of hillslope erosional features. In the infrastructure corridor, we observed thermal erosion and thaw slumping that self‐healed near an embankment. To advance our understanding of processes between infrastructure and hillslope erosional features (INF‐HEF), we combined climate and remote sensing analyses to field investigations to assess an INF‐HEF system and validate our findings in a broader area along the infrastructure corridor. We identified that thaw consolidation along an embankment formed a thermokarst ditch that was ubiquitous in the broader study area, and which was extensively affected by shrubification and supported other positive feedback (e.g., snow accumulation, water impoundment, and weakened vegetation mat). The thermokarst ditch facilitated channelization of cross‐drainage water, thus increasing the terrain vulnerability to thermal erosion that evolved into thaw slumping after heavy rainfalls. The terrain resilience to thaw slumping benefited from the type of ground ice and topography prevailing at our site. The lateral discontinuity of massive ice in an ice‐wedge polygonal system (i.e., interchange soil and massive ice) compounded to a low‐slope gradient with topographic obstacles (e.g., baydzherakhs) decreased slumping activity and supported self‐stabilization.
more »
« less
- PAR ID:
- 10407505
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Permafrost and Periglacial Processes
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 1045-6740
- Page Range / eLocation ID:
- p. 208-228
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Thaw-induced permafrost landslides, or thaw slumps, exemplify the alarming potential of rapid Arctic climate change to couple with unstable geomorphic feedbacks and escalate landscape hazards, sediment and solute fluxes, and carbon emissions. An emergent hot spot of thaw slump activity in the western Canadian Arctic provides an opportunity to understand the geomorphic context that predisposes some regions to extreme thaw sensitivity. Previous research suggests that slump concentration in this region may result from postglacial incision of ice-cored moraine along the historical margin of the Laurentide Ice Sheet. We assess this hypothesis in the Aklavik Range of the Northwest Territories, where we mapped 217 thaw slumps and reconstructed more than 3 m/k.y. of bedrock canyon incision since the Last Glacial Maximum. We find that thaw slumps tend to form between fluvially incised bedrock and relict till hillslopes. More than 75% of thaw slumping occurs within 500 m of incised bedrock, and hillslope normalized steepness explains over 33% of slump size variability. We interpret intense regional thaw slumping as a climate-sensitive landscape response to postglacial base-level change propagating into ice-cored hillslopes. This finding implies that the end-member permafrost disturbances observed in the western Canadian Arctic may be limited outside regions that share analogous geomorphic context.more » « less
-
This dataset documents changes in infrastructure development and associated ice wedge thermokarst formation in Point Lay (Kali), Alaska, between 1949 and 2020. The data include vector-based Geographic Information System (GIS) layers derived from high-resolution remote sensing imagery and historical aerial photographs for three key time points: 1949, 1974, and 2019/20. Infrastructure features (e.g., roads, runways, gravel pads, and buildings) were manually digitized, and the extent of ice wedge thermokarst was mapped using detailed image interpretation techniques at 1:500 scale. The dataset supports spatial analysis of thermokarst expansion in relation to anthropogenic disturbance and surface development. Findings reveal a near tenfold increase in ice wedge thermokarst extent in developed areas between 1974 and 2019, with minimal changes in adjacent undisturbed tundra, underscoring the synergistic impact of infrastructure and climate warming on permafrost degradation. These data provide a valuable baseline for tracking permafrost-related landscape changes and informing adaptation strategies in Arctic communities experiencing thaw-related infrastructure challenges.more » « less
-
Ice-rich permafrost in the circum-Arctic and sub-Arctic (hereafter pan-Arctic), such as late Pleistocene Yedoma, are especially prone to degradation due to climate change or human activity. When Yedoma deposits thaw, large amounts of frozen organic matter and biogeochemically relevant elements return into current biogeochemical cycles. This mobilization of elements has local and global implications: increased thaw in thermokarst or thermal erosion settings enhances greenhouse gas fluxes from permafrost regions. In addition, this ice-rich ground is of special concern for infrastructure stability as the terrain surface settles along with thawing. Finally, understanding the distribution of the Yedoma domain area provides a window into the Pleistocene past and allows reconstruction of Ice Age environmental conditions and past mammoth-steppe landscapes. Therefore, a detailed assessment of the current pan-Arctic Yedoma coverage is of importance to estimate its potential contribution to permafrost-climate feedbacks, assess infrastructure vulnerabilities, and understand past environmental and permafrost dynamics. Building on previous mapping efforts, the objective of this paper is to compile the first digital pan-Arctic Yedoma map and spatial database of Yedoma coverage. Therefore, we 1) synthesized, analyzed, and digitized geological and stratigraphical maps allowing identification of Yedoma occurrence at all available scales, and 2) compiled field data and expert knowledge for creating Yedoma map confidence classes. We used GIS-techniques to vectorize maps and harmonize site information based on expert knowledge. We included a range of attributes for Yedoma areas based on lithological and stratigraphic information from the source maps and assigned three different confidence levels of the presence of Yedoma (confirmed, likely, or uncertain). Using a spatial buffer of 20 km around mapped Yedoma occurrences, we derived an extent of the Yedoma domain. Our result is a vector-based map of the current pan-Arctic Yedoma domain that covers approximately 2,587,000 km 2 , whereas Yedoma deposits are found within 480,000 km 2 of this region. We estimate that 35% of the total Yedoma area today is located in the tundra zone, and 65% in the taiga zone. With this Yedoma mapping, we outlined the substantial spatial extent of late Pleistocene Yedoma deposits and created a unique pan-Arctic dataset including confidence estimates.more » « less
-
Abstract. Permafrost degradation in Arctic lowlands is a critical geomorphic process, increasingly driven by climate warming and infrastructure development. This study applies an integrated geophysical and surveying approach – Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and thaw probing – to characterize near-surface permafrost variability across four land use types in Utqiaġvik, Alaska: gravel road, snow fence, residential building and undisturbed tundra. Results reveal pronounced heterogeneity in thaw depths (0.2 to >1 m) and ice content, shaped by both natural features such as ice wedges and frost heave and anthropogenic disturbances. Roads and snow fences altered surface drainage and snow accumulation, promoting differential thaw, deeper active layers, and localized ground deformation. Buildings in permafrost regions alter the local thermal regime through multiple interacting factors – for example, solar radiation, thermal leakage, snow cover dynamics, and surface disturbance – among others. ERT identified high-resistivity zones (>1,000 Ω·m) interpreted as ice-rich permafrost and low-resistivity features (<5 Ω·m) likely associated with cryopegs or thaw zones. GPR delineated subsurface stratigraphy and supported interpretation of ice-rich layers and permafrost features. These findings underscore the strong spatial coupling between surface infrastructure and subsurface thermal and hydrological regimes in ice-rich permafrost. Geophysical methods revealed subsurface features and thaw depth variations across different land use types in Utqiaġvik, highlighting how infrastructure alters permafrost conditions. These findings support localized assessment of ground stability in Arctic environments.more » « less
An official website of the United States government
