The DESI Milky Way Survey (MWS) will observe ≥8 million stars between 16 <
We describe the Milky Way Survey (MWS) that will be undertaken with the Dark Energy Spectroscopic Instrument (DESI) on the Mayall 4 m telescope at the Kitt Peak National Observatory. Over the next 5 yr DESI MWS will observe approximately seven million stars at Galactic latitudes ∣
- PAR ID:
- 10407530
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 947
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 37
- Size(s):
- Article No. 37
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract r < 19 mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients, characterize diffuse substructure in the thick disk and stellar halo, enable the discovery of extremely metal-poor stars and other rare stellar types, and improve constraints on the Galaxy’s 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public (Available athttps://data.desi.lbl.gov/public/ets/target/catalogs/ and detailed athttps://desidatamodel.readthedocs.io ). -
Abstract The Dark Energy Spectroscopic Instrument (DESI) is carrying out a five-year survey that aims to measure the redshifts of tens of millions of galaxies and quasars, including 8 million luminous red galaxies (LRGs) in the redshift range 0.4 <
z ≲ 1.0. Here we present the selection of the DESI LRG sample and assess its spectroscopic performance using data from Survey Validation (SV) and the first two months of the Main Survey. The DESI LRG sample, selected usingg ,r ,z , andW 1 photometry from the DESI Legacy Imaging Surveys, is highly robust against imaging systematics. The sample has a target density of 605 deg−2and a comoving number density of 5 × 10−4h 3Mpc−3in 0.4 <z < 0.8; this is a significantly higher density than previous LRG surveys (such as SDSS, BOSS, and eBOSS) while also extending toz ∼ 1. After applying a bright star veto mask developed for the sample, 98.9% of the observed LRG targets yield confident redshifts (with a catastrophic failure rate of 0.2% in the confident redshifts), and only 0.5% of the LRG targets are stellar contamination. The LRG redshift efficiency varies with source brightness and effective exposure time, and we present a simple model that accurately characterizes this dependence. In the appendices, we describe the extended LRG samples observed during SV. -
Abstract A key component of the Dark Energy Spectroscopic Instrument (DESI) survey validation (SV) is a detailed visual inspection (VI) of the optical spectroscopic data to quantify key survey metrics. In this paper we present results from VI of the quasar survey using deep coadded SV spectra. We show that the majority (≈70%) of the main-survey targets are spectroscopically confirmed as quasars, with ≈16% galaxies, ≈6% stars, and ≈8% low-quality spectra lacking reliable features. A nonnegligible fraction of the quasars are misidentified by the standard spectroscopic pipeline, but we show that the majority can be recovered using post-pipeline “afterburner” quasar-identification approaches. We combine these “afterburners” with our standard pipeline to create a modified pipeline to increase the overall quasar yield. At the depth of the main DESI survey, both pipelines achieve a good-redshift purity (reliable redshifts measured within 3000 km s−1) of ≈99%; however, the modified pipeline recovers ≈94% of the visually inspected quasars, as compared to ≈86% from the standard pipeline. We demonstrate that both pipelines achieve a median redshift precision and accuracy of ≈100 km s−1and ≈70 km s−1, respectively. We constructed composite spectra to investigate why some quasars are missed by the standard pipeline and find that they are more host-galaxy dominated (i.e., distant analogs of “Seyfert galaxies”) and/or more dust reddened than the standard-pipeline quasars. We also show example spectra to demonstrate the overall diversity of the DESI quasar sample and provide strong-lensing candidates where two targets contribute to a single spectrum.
-
Abstract We introduce the DESI LOW-
Z Secondary Target Survey, which combines the wide-area capabilities of the Dark Energy Spectroscopic Instrument (DESI) with an efficient, low-redshift target selection method. Our selection consists of a set of color and surface brightness cuts, combined with modern machine-learning methods, to target low-redshift dwarf galaxies (z < 0.03) between 19 <r < 21 with high completeness. We employ a convolutional neural network (CNN) to select high-priority targets. The LOW-Z survey has already obtained over 22,000 redshifts of dwarf galaxies (M *< 109M ⊙), comparable to the number of dwarf galaxies discovered in the Sloan Digital Sky Survey DR8 and GAMA. As a spare fiber survey, LOW-Z currently receives fiber allocation for just ∼50% of its targets. However, we estimate that our selection is highly complete: for galaxies atz < 0.03 within our magnitude limits, we achieve better than 95% completeness with ∼1% efficiency using catalog-level photometric cuts. We also demonstrate that our CNN selectionsz < 0.03 galaxies from the photometric cuts subsample at least 10 times more efficiently while maintaining high completeness. The full 5 yr DESI program will expand the LOW-Z sample, densely mapping the low-redshift Universe, providing an unprecedented sample of dwarf galaxies, and providing critical information about how to pursue effective and efficient low-redshift surveys. -
Abstract Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. At
z < 0.6, the DESI Bright Galaxy Survey (BGS) will produce the most detailed map of the universe during the dark-energy-dominated epoch with redshifts of >10 million galaxies spanning 14,000 deg2. In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target anr < 19.5 mag limited sample (BGS Bright), a fainter 19.5 <r < 20.175 color-selected sample (BGS Faint), and a smaller low-z quasar sample. BGS will observe these targets using exposure times scaled to achieve homogeneous completeness and cover the footprint three times. We use observations from the Survey Validation programs conducted prior to the main survey along with simulations to show that BGS can complete its strategy and make optimal use of “bright” time. BGS targets have stellar contamination <1%, and their densities do not depend strongly on imaging properties. BGS Bright will achieve >80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements atz < 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g.,N -point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter.