skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dataset for "Micromechanics and Strain Localization in Sand in the Ductile Regime"
{"Abstract":["This dataset contains tomography images and stress-strain curves used in the publication titled "Micromechanics and Strain Localization in Sand in the Ductile Regime" in the Journal of Geophysical Research: Solid Earth<\/p>"]}  more » « less
Award ID(s):
1942096
PAR ID:
10407707
Author(s) / Creator(s):
;
Publisher / Repository:
Zenodo
Date Published:
Edition / Version:
v1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The data provided here accompany the publication "Drought Characterization with GPS: Insights into Groundwater and Reservoir Storage in California" [Young et al., (2024)] which is currently under review with Water Resources Research. (as of 28 May 2024)Please refer to the manuscript and its supplemental materials for full details. (A link will be appended following publication)File formatting information is listed below, followed by a sub-section of the text describing the Geodetic Drought Index Calculation. The longitude, latitude, and label for grid points are provided in the file "loading_grid_lon_lat".Time series for each Geodetic Drought Index (GDI) time scale are provided within "GDI_time_series.zip".The included time scales are for 00- (daily), 1-, 3-, 6-, 12- 18- 24-, 36-, and 48-month GDI solutions.Files are formatted following...Title: "grid point label L****"_"time scale"_monthFile Format: ["decimal date" "GDI value"]Gridded, epoch-by-epoch, solutions for each time scale are provided within "GDI_grids.zip".Files are formatted following...Title: GDI_"decimal date"_"time scale"_monthFile Format: ["longitude" "latitude" "GDI value" "grid point label L****"]2.2 GEODETIC DROUGHT INDEX CALCULATION We develop the GDI following Vicente-Serrano et al. (2010) and Tang et al. (2023), such that the GDI mimics the derivation of the SPEI, and utilize the log-logistic distribution (further details below). While we apply hydrologic load estimates derived from GPS displacements as the input for this GDI (Figure 1a-d), we note that alternate geodetic drought indices could be derived using other types of geodetic observations, such as InSAR, gravity, strain, or a combination thereof. Therefore, the GDI is a generalizable drought index framework. A key benefit of the SPEI is that it is a multi-scale index, allowing the identification of droughts which occur across different time scales. For example, flash droughts (Otkin et al., 2018), which may develop over the period of a few weeks, and persistent droughts (>18 months), may not be observed or fully quantified in a uni-scale drought index framework. However, by adopting a multi-scale approach these signals can be better identified (Vicente-Serrano et al., 2010). Similarly, in the case of this GPS-based GDI, hydrologic drought signals are expected to develop at time scales that are both characteristic to the drought, as well as the source of the load variation (i.e., groundwater versus surface water and their respective drainage basin/aquifer characteristics). Thus, to test a range of time scales, the TWS time series are summarized with a retrospective rolling average window of D (daily with no averaging), 1, 3, 6, 12, 18, 24, 36, and 48-months width (where one month equals 30.44 days). From these time-scale averaged time series, representative compilation window load distributions are identified for each epoch. The compilation window distributions include all dates that range ±15 days from the epoch in question per year. This allows a characterization of the estimated loads for each day relative to all past/future loads near that day, in order to bolster the sample size and provide more robust parametric estimates [similar to Ford et al., (2016)]; this is a key difference between our GDI derivation and that presented by Tang et al. (2023). Figure 1d illustrates the representative distribution for 01 December of each year at the grid cell co-located with GPS station P349 for the daily TWS solution. Here all epochs between between 16 November and 16 December of each year (red dots), are compiled to form the distribution presented in Figure 1e. This approach allows inter-annual variability in the phase and amplitude of the signal to be retained (which is largely driven by variation in the hydrologic cycle), while removing the primary annual and semi-annual signals. Solutions converge for compilation windows >±5 days, and show a minor increase in scatter of the GDI time series for windows of ±3-4 days (below which instability becomes more prevalent). To ensure robust characterization of drought characteristics, we opt for an extended ±15-day compilation window. While Tang et al. (2023) found the log-logistic distribution to be unstable and opted for a normal distribution, we find that, by using the extended compiled distribution, the solutions are stable with negligible differences compared to the use of a normal distribution. Thus, to remain aligned with the SPEI solution, we retain the three-parameter log-logistic distribution to characterize the anomalies. Probability weighted moments for the log-logistic distribution are calculated following Singh et al., (1993) and Vicente-Serrano et al., (2010). The individual moments are calculated following Equation 3. These are then used to calculate the L-moments for shape (), scale (), and location () of the three-parameter log-logistic distribution (Equations 4 – 6). The probability density function (PDF) and the cumulative distribution function (CDF) are then calculated following Equations 7 and 8, respectively. The inverse Gaussian function is used to transform the CDF from estimates of the parametric sample quantiles to standard normal index values that represent the magnitude of the standardized anomaly. Here, positive/negative values represent greater/lower than normal hydrologic storage. Thus, an index value of -1 indicates that the estimated load is approximately one standard deviation dryer than the expected average load on that epoch. *Equations can be found in the main text. 
    more » « less
  2. This dataset contains the data used in the paper (arXiv:2301.02398) on the estimation and subtraction of glitches in gravitational wave data using an adaptive spline fitting method called SHAPES . Each .zip file corresponds to one of the glitches considered in the paper. The name of the class to which the glitch belongs (e.g., "Blip") is included in the name of the corresponding .zip file (e.g., BLIP_SHAPESRun_20221229T125928.zip). When uncompressed, each .zip file expands to a folder containing the following. An HDF5 file containing the Whitened gravitational wave (GW) strain data in which the glitch appeared. The data has been whitened using a proprietary code. The original (unwhitened) strain data file is available from gwosc.org. The name of the original data file is the part preceding the token '__dtrndWhtnBndpss' in the name of the file.A JSON file containing information pertinent to the glitch that was analyzed (e.g., start and stop indices in the whitened data time series).A set of .mat  files containing segmented estimates of the glitch as described in the paper.  A MATLAB script, plotglitch.m, has been provided that plots, for a given glitch folder name, the data segment that was analyzed in the paper. Another script, plotshapesestimate.m, plots the estimated glitch. These scripts require the JSONLab package. 
    more » « less
  3. {"Abstract":["This record contains supplementary information for the article "Inheritance of DNA methylation differences in the mangrove Rhizophora mangle" published in Evolution&Development. It contains the barcodes (barcodes.txt), the reference contigs (contigs.fasta.gz), the annotation of the reference contigs (mergedAnnot.csv.gz), the SNPs (snps.vcf.gz), the methylation data (methylation.txt.gz), and the experimental design (design.txt). All data are unfiltered. Short reads are available on SRA (PRJNA746695). Note that demultiplexing of the pooled reads (SRX11452376) will fail because the barcodes are already removed and the header information is lost during SRA submission. Instead, use the pre-demultiplexed reads that are as well linked to PRJNA746695.<\/p>\n\n\n <\/p>\n\nTable S13 (TableS13_DSSwithGeneAnnotation.offspringFams.csv.gz): <\/strong><\/p>\n\nDifferential cytosine methylation between families using the mother data set. The first three columns fragment number ("chr"), the position within the fragment ("pos"), and the sequence context ("context"). Columns with the pattern FDR_<X>_vs_<Y> contain false discovery rates of a test comparing population X with population Y. Average DNA methylation levels for each population are given in the columns "AC", "FD", "HI", "UTB", "WB", and "WI". The remaining columns contain the annotation of the fragment, for example whether it matches to a gene and if yes, the gene name ID and description are provided.<\/p>"]} 
    more » « less
  4. Kim, J (Ed.)
    Abstract Though natural systems harbor genetic and phenotypic variation, research in model organisms is often restricted to a reference strain. Focusing on a reference strain yields a great depth of knowledge but potentially at the cost of breadth of understanding. Furthermore, tools developed in the reference context may introduce bias when applied to other strains, posing challenges to defining the scope of variation within model systems. Here, we evaluate how genetic differences among 5 wild Caenorhabditis elegans strains affect gene expression and its quantification, in general and after induction of the RNA interference (RNAi) response. Across strains, 34% of genes were differentially expressed in the control condition, including 411 genes that were not expressed at all in at least 1 strain; 49 of these were unexpressed in reference strain N2. Reference genome mapping bias caused limited concern: despite hyperdiverse hotspots throughout the genome, 92% of variably expressed genes were robust to mapping issues. The transcriptional response to RNAi was highly strain- and target-gene-specific and did not correlate with RNAi efficiency, as the 2 RNAi-insensitive strains showed more differentially expressed genes following RNAi treatment than the RNAi-sensitive reference strain. We conclude that gene expression, generally and in response to RNAi, differs across C. elegans strains such that the choice of strain may meaningfully influence scientific inferences. Finally, we introduce a resource for querying gene expression variation in this dataset at https://wildworm.biosci.gatech.edu/rnai/. 
    more » « less
  5. {"Abstract":["Data files for the manuscript "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet".<\/p>\n\nReference: A. Nag, A. Nocera, S. Agrestini, M. Garcia-Fernandez, A. C. Walters, Sang-Wook Cheong, S. Johnston, and Ke-Jin Zhou, "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet". arXiv:2111.03625 (2021).<\/p>\n\nPreprint: arXiv:2111.03625 (2021), URL: https://arxiv.org/abs/2111.03625<\/p>"]} 
    more » « less