skip to main content

Title: Dynamic and thermodynamic influences on precipitation in Northeast Mexico on orbital to millennial timescales

The timing and mechanisms of past hydroclimate change in northeast Mexico are poorly constrained, limiting our ability to evaluate climate model performance. To address this, we present a multiproxy speleothem record of past hydroclimate variability spanning 62.5 to 5.1 ka from Tamaulipas, Mexico. Here we show a strong influence of Atlantic and Pacific sea surface temperatures on orbital and millennial scale precipitation changes in the region. Multiple proxies show no clear response to insolation forcing, but strong evidence for dry conditions during Heinrich Stadials. While these trends are consistent with other records from across Mesoamerica and the Caribbean, the relative importance of thermodynamic and dynamic controls in driving this response is debated. An isotope-enabled climate model shows that cool Atlantic SSTs and stronger easterlies drive a strong inter-basin sea surface temperature gradient and a southward shift in moisture convergence, causing drying in this region.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The paleoclimatic record from Mexico and Central America, or Mesoamerica, documents dramatic swings in hydroclimate over the past few millennia. However, the dynamics underlying these past changes remain obscure. We use proxy indicators of hydroclimate to show that last millennium hydroclimate variability was dominated by opposite‐signed moisture anomalies in northern and southern Mesoamerica. This pattern results from changes in moisture convergence driven by Atlantic‐Pacific interbasin temperature gradients. While this pattern is reproduced by several models and multiple experiments with a single model, models appear to disagree about the underlying dynamics of this interbasin gradient. Moreover, disagreement about the interbasin gradient, and associated hydroclimate pattern, dominates spread in 21st century regional hydroclimate projections. These results emphasize the role of interbasin asymmetries in governing past and future regional climate change. They also demonstrate that paleoclimate studies can elucidate mechanisms directly relevant to projecting future hydroclimate in climate change hot spots like Mesoamerica.

    more » « less
  2. Abstract

    This study investigates the stratospheric response to Arctic sea ice loss and subsequent near-surface impacts by analyzing 200-member coupled experiments using the Whole Atmosphere Community Climate Model version 6 (WACCM6) with preindustrial, present-day, and future sea ice conditions specified following the protocol of the Polar Amplification Model Intercomparison Project. The stratospheric polar vortex weakens significantly in response to the prescribed sea ice loss, with a larger response to greater ice loss (i.e., future minus preindustrial) than to smaller ice loss (i.e., future minus present-day). Following the weakening of the stratospheric circulation in early boreal winter, the coupled stratosphere–troposphere response to ice loss strengthens in late winter and early spring, projecting onto a negative North Atlantic Oscillation–like pattern in the lower troposphere. To investigate whether the stratospheric response to sea ice loss and subsequent surface impacts depend on the background oceanic state, ensemble members are initialized by a combination of varying phases of Atlantic multidecadal variability (AMV) and interdecadal Pacific variability (IPV). Different AMV and IPV states combined, indeed, can modulate the stratosphere–troposphere responses to sea ice loss, particularly in the North Atlantic sector. Similar experiments with another climate model show that, although strong sea ice forcing also leads to tighter stratosphere–troposphere coupling than weak sea ice forcing, the timing of the response differs from that in WACCM6. Our findings suggest that Arctic sea ice loss can affect the stratospheric circulation and subsequent tropospheric variability on seasonal time scales, but modulation by the background oceanic state and model dependence need to be taken into account.

    Significance Statement

    This study uses new-generation climate models to better understand the impacts of Arctic sea ice loss on the surface climate in the midlatitudes, including North America, Europe, and Siberia. We focus on the stratosphere–troposphere pathway, which involves the weakening of stratospheric winds and its downward coupling into the troposphere. Our results show that Arctic sea ice loss can affect the surface climate in the midlatitudes via the stratosphere–troposphere pathway, and highlight the modulations from background mean oceanic states as well as model dependence.

    more » « less
  3. Abstract

    We reconstructed hydroclimate variability in the Yucatán Peninsula (YP) based on stalagmite oxygen and carbon isotope records from a well-studied cave system located in the northeastern YP, a region strongly influenced by Caribbean climate dynamics. The new stalagmite isotopic records span the time interval between 43 and 26.6 ka BP, extending a previously published record from the same cave system covering the interval between 26.5 and 23.2 ka BP. Stalagmite stable isotope records show dominant decadal and multidecadal variability, and weaker variability on millennial timescales. These records suggest significant precipitation declines in the broader Caribbean region during Heinrich events 4 and 3 of ice-rafted discharge into the North Atlantic, in agreement with the antiphase pattern of precipitation variability across the equator suggested by previous studies. On millennial timescales, the stalagmite isotope records do not show the distinctive saw-tooth pattern of climate variability observed in Greenland during Dansgaard–Oeschger (DO) events, but a pattern similar to North Atlantic sea surface temperature (SST) variability. We propose that shifts in the mean position of the Intertropical Convergence Zone (ITCZ), per se, are not the dominant driver of last glacial hydroclimate variability in the YP on millennial timescales but instead that North Atlantic SSTs played a dominant role. Our results support a negative climate feedback mechanism whereby large low latitude precipitation deficits resulting from AMOC slowdown would lead to elevated salinity in the Caribbean and ultimately help reactivate AMOC and Caribbean precipitation. However, because of the unique drivers of future climate in the region, predicted twenty-first century YP precipitation reductions are unlikely to be modulated by this negative feedback mechanism.

    more » « less
  4. null (Ed.)
    Large tropical volcanic eruptions can affect the climate of many regions on Earth, yet it is uncertain how the largest eruptions over the past millennium may have altered Earth’s hydroclimate. Here, we analyze the global hydroclimatic response to all the tropical volcanic eruptions over the past millennium that were larger than the Mount Pinatubo eruption of 1991. Using the Paleo Hydrodynamics Data Assimilation product (PHYDA), we find that these large volcanic eruptions tended to produce dry conditions over tropical Africa, Central Asia and the Middle East and wet conditions over much of Oceania and the South American monsoon region. These anomalies are statistically significant, and they persisted for more than a decade in some regions. The persistence of the anomalies is associated with southward shifts in the Intertropical Convergence Zone and sea surface temperature changes in the Pacific and Atlantic oceans. We compare the PHYDA results with the stand-alone model response of the Community Earth System Model (CESM)-Last Millennium Ensemble. We find that the proxy-constrained PHYDA estimates are larger and more persistent than the responses simulated by CESM. Understanding which of these estimates is more realistic is critical for accurately characterizing the hydroclimate risks of future volcanic eruptions. 
    more » « less
  5. Atmospheric rivers (ARs) bring concentrated rainfall and flooding to the western United States (US) and are hypothesized to have supported sustained hydroclimatic changes in the past. However, their ephemeral nature makes it challenging to document ARs in climate models and estimate their contribution to hydroclimate changes recorded by time-averaged paleoclimate archives. We present new climate model simulations of Heinrich Stadial 1 (HS1; 16,000 years before the present), an interval characterized by widespread wetness in the western US, that demonstrate increased AR frequency and winter precipitation sourced from the southeastern North Pacific. These changes are amplified with freshwater fluxes into the North Atlantic, indicating that North Atlantic cooling associated with weakened Atlantic Meridional Overturning Circulation (AMOC) is a key driver of HS1 climate in this region. As recent observations suggest potential weakening of AMOC, our identified connection between North Atlantic climate and northeast Pacific AR activity has implications for future western US hydroclimate.

    more » « less