skip to main content

Title: Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM
The US highway system features a huge flux of energy transportation in terms of weight, speed, volume, flow density, and noise levels, with accompanying environmental effects. The adverse effects of high-volume traffic cause health concerns for nearby residential areas. Both chronic and acute exposure to PM 2.5 have detrimental effects on respiratory and cardiovascular health, and motor vehicles contribute 25–35% of direct PM 2.5 emissions. In addition to traffic-related pollutants, residing near major roadways is also associated with exposure to increased noise, and both affect the health and quality of life of residents. While regulatory and policy actions may reduce some exposures, engineering means may offer novel and significant methods to address these critical health and environmental issues. The goal of this study was to harvest highway-noise energy to induce surface charge via a piezoelectric material to entrap airborne particles, including PM 2.5. In this study, we experimentally investigated the piezoelectric effect of a polymethyl methacrylate (PMMA) sheet and ethylene propylene diene monomer (EPDM) rubber foam on the entrapment of copper (II)-2,4 pentanedione powder (Cu II powder). Appreciable voltages were induced on the surfaces of the PMMA via mechanical vibrations, leading to the effective entrapment of the Cu II powder. The EPDM rubber foam was found to attract a large amount of Cu II powder under simulated highway noise in a wide range, of 30–70 dB, and at frequencies of 700–1300 Hz, generated by using a loudspeaker. The amount of Cu II powder entrapped on the EPDM rubber-foam surfaces was found to scale with the SPL, but was independent of frequency. The experimental findings from this research provide a valuable base for the design of a robust piezoelectric system that is self-powered by harvesting the wasted sound energy from highway noise and reduces the amount of airborne particles over highways for effective environmental control.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tire wear particles (TWPs) are a major category of microplastic pollution produced by friction between tires and road surfaces. This non-exhaust particulate matter (PM) is transported through the air and with runoff leading to environmental pollution and health concerns. Here, we collected airborne PM along paved roads with different traffic volumes and speeds using Sigma-2 passive samplers. Particles entering the samplers deposit onto substrates for analysis, or, as we modified it, directly into small (60 ml) separatory funnels, which is particularly useful with high particle loads, where a density separation aids in isolating the microplastics. We quantified putative TWPs (∼10–80 µm) deposited on the substrates (primarily adhesive tape on glass slides) and in the funnels using stereomicroscopy. Putative TWP deposition rates (particles/cm 2 /day ± SD) at 5 m from the road were highest near a busy highway (324 ± 129), followed by a boulevard with moderate traffic (184 ± 93), and a slow traffic avenue (29 ± 7). We observed that deposition rates increased within proximity to the highway: 99 ± 54, 180 ± 88, and 340 ± 145 at 30, 15, and 5 m, respectively. We show that TWP abundances (i.e., deposition and mass concentration) increase with vehicle braking (driving behavior). We observed no differences ( p > 0.05) between the separatory funnel and adhesive tape collection methods. In addition, we were able to obtain FTIR spectra of TWPs (>10 µm) using µ-ATR-FTIR. Both deserve further scrutiny as novel sampling and analytical approaches. In a separate sampling campaign, we differentiated 1438 particles (∼1–80 µm) deposited on boron substrates into TWP, metal, mineral, and biogenic/organic classes with single particle SEM/EDX analysis based on morpho-textural-chemical classification and machine learning. The results revealed similar concentration trends with traffic (high > moderate > low), with the distribution of particle sources alike for the highway and the moderate road: TWPs (∼38–39%) > biogenic (∼34–35%) > minerals (∼23–26%), and metallic particles (∼2–3%). The low traffic road yielded a much different distribution: biogenic (65%) > minerals (27%) > TWPs (7%) > metallic particles (1%). Overall, this work provides much-needed empirical data on airborne TWPs along different types of roads. 
    more » « less
  2. Abstract

    The emergence of the SARS‐CoV‐2 pandemic and airborne particulate matter (PM) pollution has led to remarkably high demand for face masks. However, conventional respirators are intended for single use and made from nondegradable materials, causing serious concern for a plastic‐waste environmental crisis. Furthermore, these facemasks are weakened in humid conditions and difficult to decontaminate. Herein, a reusable, self‐sustaining, highly effective, and humidity‐resistant air filtration membrane with excellent particle‐removal efficiency is reported, based on highly controllable and stable piezoelectric electrospun poly (l‐lactic acid) (PLLA) nanofibers. The PLLA filter possesses a high filtration efficiency (>99% for PM 2.5 and>91% for PM 1.0) while providing a favorable pressure drop (91 Pa at normal breathing rate) for human breathing due to the piezoelectric charge naturally activated by respiration through the mask. The filter has a long, stable filtration performance and good humidity resistance, demonstrated by a minimal declination in the filtration performance of the nanofiber membrane after moisture exposure. The PLLA filter is reusable via common sterilization tools (i.e., an ultrasonic cleaning bath, autoclave, or microwave). Moreover, a prototype of a completely biodegradable PLLA nanofiber‐based facemask is fabricated and shown to decompose within 5 weeks in an accelerated degradation environment.

    more » « less
  3. null (Ed.)
    This project seeks to investigate the under addressed issue of indoor environmental quality (IEQ) and the impacts these factors can have on human health. The recent COVID-19 pandemic has once again brought to the forefront the importance of maintaining a healthy indoor environment. Specifically, the improvement of indoor air flow has shown to reduce the risk of airborne virus exposure. This is extremely important in the context of hospitals, which contain high concentrations of atrisk individuals. Thus, the need to create a healthy indoor space is critical to improve public health and COVID-19 mitigation efforts. To create knowledge and provide insight on environmental qualities in the hospital setting, the authors have designed and built an interface to deploy in the University of Virginia Hospital Emergency Department (ED). The interface will display room-specific light, noise, temperature, CO 2 , humidity, VOC, and PM 2.5 levels measured by the low-cost Awair Omni sensor. These insights will assist ED clinicians in mitigating disease-spread and improving patient health and satisfaction while reducing caregiver burden. The team addressed the problem through agile development involving localized sensor deployment and analysis, discovery interviews with hospital clinicians and data scientists throughout, and the implementation of a human-design centered Django interface application. Furthermore, a literature survey was conducted to ascertain appropriate thresholds for the different environmental factors. Together, this work demonstrates opportunities to assist and improve patient care with environmental data. 
    more » « less
  4. Abstract Particulate matter (PM) concentration levels in the London Underground (LU) are higher than London background levels and beyond World Health Organization (WHO) defined limits. Wheel, track, and brake abrasion are the primary sources of particulate matter, producing predominantly Fe-rich particles that make the LU microenvironment particularly well suited to study using environmental magnetism. Here we combine magnetic properties, high-resolution electron microscopy, and electron tomography to characterize the structure, chemistry, and morphometric properties of LU particles in three dimensions with nanoscale resolution. Our findings show that LU PM is dominated by 5–500 nm particles of maghemite, occurring as 0.1–2 μm aggregated clusters, skewing the size-fractioned concentration of PM artificially to larger sizes when measured with traditional monitors. Magnetic properties are largely independent of the PM filter size (PM 10 , PM 4 , and PM 2.5 ), and demonstrate the presence of superparamagnetic (< 30 nm), single-domain (30–70 nm), and vortex/pseudo-single domain (70–700 nm) signals only (i.e., no multi-domain particles > 1 µm). The oxidized nature of the particles suggests that PM exposure in the LU is dominated by resuspension of aged dust particles relative to freshly abraded, metallic particles from the wheel/track/brake system, suggesting that periodic removal of accumulated dust from underground tunnels might provide a cost-effective strategy for reducing exposure. The abundance of ultrafine particles identified here could have particularly adverse health impacts as their smaller size makes it possible to pass from lungs to the blood stream. Magnetic methods are shown to provide an accurate assessment of ultrafine PM characteristics, providing a robust route to monitoring, and potentially mitigating this hazard. 
    more » « less
  5. Abstract

    Using data from the Environmental Protection Agency’s Chemical Speciation Network, we have characterized trends in PM2.5transition metals in urban areas across the United States for the period 2001–2016. The metals included in this analysis—Cr, Cu, Fe, Mn, Ni, V, and Zn—were selected based upon their abundance in PM2.5, known sources, and links to toxicity. Ten cities were included to provide broad geographic coverage, diverse source influences, and climatology: Atlanta (ATL), Baltimore (BAL), Chicago (CHI), Dallas (DAL), Denver (DEN), Los Angeles (LA), New York City (NYC), Phoenix (PHX), Seattle (SEA), and St. Louis (STL). The concentrations of V and Zn decreased in all ten cities, though the V decreases were more substantial. Cr concentrations increased in cities in the East and Midwest, with a pronounced spike in concentrations in 2013. The National Emissions Inventory was used to link sources with the observed trends; however, the causes of the broad Cr concentration increases and 2013 spike are not clear. Analysis of PM2.5metal concentrations in port versus non-port cities showed different trends for Ni, suggesting an important but decreasing influence of marine emissions. The concentrations of most PM2.5metals decreased in LA, STL, BAL, and SEA while concentrations of four of the seven metals (Cr, Fe, Mn, Ni) increased in DAL over the same time. Comparisons of the individual metals to overall trends in PM2.5suggest decoupled sources and processes affecting each. These metals may have an enhanced toxicity compared to other chemical species present in PM, so the results have implications for strategies to measure exposures to PM and the resulting human health effects.

    more » « less