skip to main content


Title: Discovering IoT Physical Channel Vulnerabilities
Smart homes contain diverse sensors and actuators controlled by IoT apps that provide custom automation. Prior works showed that an adversary could exploit physical interaction vulnerabilities among apps and put the users and environment at risk, e.g., to break into a house, an adversary turns on the heater to trigger an app that opens windows when the temperature exceeds a threshold. Currently, the safe behavior of physical interactions relies on either app code analysis or dynamic analysis of device states with manually derived policies by developers. However, existing works fail to achieve sufficient breadth and fidelity to translate the app code into their physical behavior or provide incomplete security policies, causing poor accuracy and false alarms. In this paper, we introduce a new approach, IoTSeer, which efficiently combines app code analysis and dynamic analysis with new security policies to discover physical interaction vulnerabilities. IoTSeer works by first translating sensor events and actuator commands of each app into a physical execution model (PeM) and unifying PeMs to express composite physical execution of apps (CPeM). CPeM allows us to deploy IoTSeer in different smart homes by defining its execution parameters with minimal data collection. IoTSeer supports new security policies with intended/unintended physical channel labels. It then efficiently checks them on the CPeM via falsification, which addresses the undecidability of verification due to the continuous and discrete behavior of IoT devices. We evaluate IoTSeer in an actual house with 14 actuators, six sensors, and 39 apps. IoTSeer discovers 16 unique policy violations, whereas prior works identify only 2 out of 16 with 18 falsely flagged violations. IoTSeer only requires 30 mins of data collection for each actuator to set the CPeM parameters and is adaptive to newly added, removed, and relocated devices.  more » « less
Award ID(s):
2144645
NSF-PAR ID:
10408411
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM SIGSAC Conference on Computer and Communications Security (CCS)
Page Range / eLocation ID:
2415 to 2428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Security of Internet of Things (IoT) devices is a well-known concern as these devices come in increasing use in homes and commercial environments. To better understand the extent to which companies take security of the IoT devices seriously and the methods they use to secure them, this paper presents findings from a security analysis of 96 top-selling WiFi IoT devices on Amazon. We found that we could carry out a significant portion of the analysis by first analyzing the code of Android companion apps responsible for controlling the devices. An interesting finding was that these devices used only 32 unique companion apps; we found instances of devices from same as well as different brands sharing the same app, significantly reducing our work. We analyzed the code of these companion apps to understand how they communicated with the devices and the security of that communication. We found security problems to be widespread: 50% of the apps corresponding to 38% of the devices did not use proper encryption techniques; some even used well-known weak ciphers such as Caesar cipher. We also purchased 5 devices and confirmed the vulnerabilities found with exploits. In some cases, we were able to bypass the pairing process and still control the device. Finally, we comment on technical and non-technical lessons learned from the study that have security implications. 
    more » « less
  2. Security of Internet of Things (IoT) devices is a well known concern as these devices come in increasing use in homes and commercial environments. To better understand the extent to which companies take security of the IoT devices seriously and the methods they use to secure them, this paper presents findings from a security analysis of 96 top-selling WiFi IoT devices on Amazon. We found that we could carry out a significant portion of the analysis by first analyzing the code of Android companion apps responsible for controlling the devices. An interesting finding was that these devices used only 32 unique companion apps; we found instances of devices from same as well as different brands sharing the same app, significantly reducing our work. We analyzed the code of these companion apps to understand how they communicated with the devices and the security of that communication. We found security problems to be widespread: 50% of the apps corresponding to 38% of the devices did not use proper encryption techniques; some even used well-known weak ciphers such as Caesar cipher. We also purchased 5 devices and confirmed the vulnerabilities found with exploits. In some cases, we were able to bypass the pairing process and still control the device. Finally, we comment on technical and non-technical lessons learned from the study that have security implications 
    more » « less
  3. Home automation platforms enable consumers to conveniently automate various physical aspects of their homes. However, the security flaws in the platforms or integrated third-party products can have serious security and safety implications for the user’s physical environment. This article describes our systematic security evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which implement home automation “routines” (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store . Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines, and it leads to 11 key findings with serious security implications. We combine several of the vulnerabilities we find to demonstrate the first end-to-end instance of lateral privilege escalation in the smart home, wherein we remotely disable the Nest Security Camera via a compromised light switch app. Finally, we discuss potential defenses, and the impact of the continuous evolution of smart home platforms on the practicality of security analysis. Our findings draw attention to the unique security challenges of smart home platforms and highlight the importance of enforcing security by design. 
    more » « less
  4. This paper focuses on developing a security mechanism geared towards appified smart-home platforms. Such platforms often expose programming interfaces for developing automation apps that mechanize different tasks among smart sensors and actuators (e.g., automatically turning on the AC when the room temperature is above 80 F). Due to the lack of effective access control mechanisms, these automation apps can not only have unrestricted access to the user's sensitive information (e.g., the user is not at home) but also violate user expectations by performing undesired actions. As users often obtain these apps from unvetted sources, a malicious app can wreak havoc on a smart-home system by either violating the user's security and privacy, or creating safety hazards (e.g., turning on the oven when no one is at home). To mitigate such threats, we propose Expat which ensures that user expectations are never violated by the installed automation apps at runtime. To achieve this goal, Expat provides a platform-agnostic, formal specification language UEI for capturing user expectations of the installed automation apps' behavior. For effective authoring of these expectations (as policies) in UEI, Expat also allows a user to check the desired properties (e.g., consistency, entailment) of them; which due to their formal semantics can be easily discharged by an SMT solver. Expat then enforces UEI policies in situ with an inline reference monitor which can be realized using the same app programming interface exposed by the underlying platform. We instantiate Expat for one of the representative platforms, OpenHAB, and demonstrate it can effectively mitigate a wide array of threats by enforcing user expectations while incurring only modest performance overhead. 
    more » « less
  5. Many smart home frameworks use applications to automate devices in a smart home. When these applications interact in the same environment, they may cause unintended actions which can lead to a safety violation (e.g., the door is unlocked when the user is not at home). While recent efforts have attempted to address this problem, they do not capture complex app behaviors such as: 1) timed behavior and user inputs (e.g., a door can remain unlocked for a long time because of a lock-door app that locks the door after 𝑥 duration, if 𝑥 is set too large.) and 2) interactions between devices and the environment they implicitly affect (e.g., water sprinklers cannot be turned on if the water supply is off). Hence, prior work leads to many false positives and false negatives. In this paper, we present PSA, a practical framework to identify safety intent violations in a smart home. PSA uses parameterized timed automata (PTA) as an expressive abstraction to model smart apps. To parse these apps into PTA, we define mappings from smart app APIs to equivalent PTA primitives. We also provide toolkits to model devices, environments, and their interactions. We evaluate PSA on 86 apps in the Samsung SmartThings IoT ecosystem. We compare PSA against two state-of-the-art baselines and find: (a) 19 new intent violations and (b) 35% fewer false positives than baselines. 
    more » « less