skip to main content


Title: Stomatal CO 2 /bicarbonate sensor consists of two interacting protein kinases, Raf-like HT1 and non-kinase-activity requiring MPK12/MPK4
Plant stomata sense CO2 via reversible interaction of the Raf-like HT1 protein kinase with non-activity requiring MAP kinase.  more » « less
Award ID(s):
1900567
NSF-PAR ID:
10408465
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
49
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf‐like kinase HT1 as a required step for stomatal movements caused by changes in CO2concentration. However, whether MPK12 kinase activity is required for regulation of CO2‐induced stomatal responses warrants in‐depth investigation.

    We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2signaling that relies on allosteric inhibition of HT1.

    We show that CO2/HCO3‐enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase‐dead and constitutively active versions of MPK12 in a plant line whereMPK12is deleted, we confirmed that CO2‐dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2/HCO3and present structural modeling that explains the MPK12:HT1 interaction interface.

    These data add to the model that MPK12 kinase‐activity‐independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2concentration.

     
    more » « less
  2. Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO2]. CO2elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO2/ABA interaction remain unclear. Two models have been considered: (i) CO2elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and (ii) CO2signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutantsnced3/nced5andaba2-1remain responsive to CO2elevation. Rapid CO2-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO2elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO2activates guard cell S-type anion channels innced3/nced5and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO2does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO2signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6. Basal ABA signaling and OST1/SnRK2 activity are required to facilitate the stomatal response to elevated CO2. These findings provide insights into the interaction between CO2/ABA signal transduction in light of the continuing rise in atmospheric [CO2].

     
    more » « less
  3. Abstract

    Pancreatic beta cells secrete insulin in response to plasma glucose. The ATP‐sensitive potassium channel (KATP) links glucose metabolism to islet electrical activity in these cells by responding to increased cytosolic [ATP]/[ADP]. It was recently proposed that pyruvate kinase (PK) in close proximity to beta cell KATPlocally produces the ATP that inhibits KATPactivity. This proposal was largely based on the observation that applying phosphoenolpyruvate (PEP) and ADP to the cytoplasmic side of excised inside‐out patches inhibited KATP. To test the relative contributions of local vs. mitochondrial ATP production, we recorded KATPactivity using mouse beta cells and INS‐1 832/13 cells. In contrast to prior reports, we could not replicate inhibition of KATPactivity by PEP + ADP. However, when the pH of the PEP solutions was not corrected for the addition of PEP, strong channel inhibition was observed as a result of the well‐known action of protons to inhibit KATP. In cell‐attached recordings, perifusing either a PK activator or an inhibitor had little or no effect on KATPchannel closure by glucose, further suggesting that PK is not an important regulator of KATP. In contrast, addition of mitochondrial inhibitors robustly increased KATPactivity. Finally, by measuring the [ATP]/[ADP] responses to imposed calcium oscillations in mouse beta cells, we found that oxidative phosphorylation could raise [ATP]/[ADP] even when ADP was at its nadir during the burst silent phase, in agreement with our mathematical model. These results indicate that ATP produced by mitochondrial oxidative phosphorylation is the primary controller of KATPin pancreatic beta cells.image

    Key points

    Phosphoenolpyruvate (PEP) plus adenosine diphosphate does not inhibit KATPactivity in excised patches. PEP solutions only inhibit KATPactivity if the pH is unbalanced.

    Modulating pyruvate kinase has minimal effects on KATPactivity.

    Mitochondrial inhibition, in contrast, robustly potentiates KATPactivity in cell‐attached patches.

    Although the ADP level falls during the silent phase of calcium oscillations, mitochondria can still produce enough ATP via oxidative phosphorylation to close KATP.

    Mitochondrial oxidative phosphorylation is therefore the main source of the ATP that inhibits the KATPactivity of pancreatic beta cells.

     
    more » « less
  4. Apicomplexan parasites like Toxoplasma gondii grow and replicate within a specialized organelle called the parasitophorous vacuole. The vacuole is decorated with parasite proteins that integrate into the membrane after trafficking through the parasite secretory system as soluble, chaperoned complexes. A regulator of this process is an atypical protein kinase called WNG1. Phosphorylation by WNG1 appears to serve as a switch for membrane integration. However, like its substrates, WNG1 is secreted from the parasite dense granules, and its activity must, therefore, be tightly regulated until the correct membrane is encountered. Here, we demonstrate that, while another member of the WNG family can adopt multiple multimeric states, WNG1 is monomeric and therefore not regulated by multimerization. Instead, we identify two phosphosites on WNG1 that are required for its kinase activity. Using a combination of in vitro biochemistry and structural modeling, we identify basic residues that are also required for WNG1 activity and appear to recognize the activating phosphosites. Among these coordinating residues are the ‘HRD’ Arg, which recognizes activation loop phosphorylation in canonical kinases. WNG1, however, is not phosphorylated on its activation loop, but rather on atypical phosphosites on its C-lobe. We propose a simple model in which WNG1 is activated by increasing ATP concentration above a critical threshold once the kinase traffics to the parasitophorous vacuole. 
    more » « less
  5. Abstract

    We report investigations of the use of cucurbit[8]uril (CB[8]) macrocycles as an antidote to counteract the in vivo biological effects of phencyclidine. We investigate the binding of CB[8] and its derivative Me4CB[8] toward ten drugs of abuse (39,1214) by a combination of1H NMR spectroscopy and isothermal titration calorimetry in phosphate buffered water. We find that the cavity of CB[8] and Me4CB[8] are able to encapsulate the 1‐amino‐1‐aryl‐cyclohexane ring system of phencyclidine (PCP) and ketamine as well as the morphinan skeleton of morphine and hydromorphone withKdvalues ≤50 nm. In vitro cytotoxicity (MTS metabolic and adenylate kinase cell death assays in HEK293 and HEPG2 cells) and in vivo maximum tolerated dose studies (Swiss Webster mice) which were performed for Me4CB[8] indicated good tolerability. The tightest host⋅guest pair (Me4CB[8]⋅PCP;Kd=2 nm) was advanced to in vivo efficacy studies. The results of open field tests demonstrate that pretreatment of mice with Me4CB[8] prevents subsequent hyperlocomotion induction by PCP and also that treatment of animals previously dosed with PCP with Me4CB[8] significantly reduces the locomotion levels.

     
    more » « less