Social experiences can shape adult behavior and cognition. Here, we use El Abra swordtails (Xiphophorus nigrensis) to assess how life-long experience with different male mating tactics shapes coercion evasion ability and female spatial cognition. We raised females from birth to adulthood in environments that varied by male mating tactic: coercers only, courtship displayers only, coercers and displayers together, mixed-strategists, and female only. In adulthood, we tested females’ behavioral responses to a coercive male and spatial cognition in a maze. Females reared with only displayers were significantly worse at distancing themselves from the coercive male than females raised with coercers and displayers and females raised with only coercers. Females raised with a single mating tactic (either courtship display or coercion) exhibited significantly higher accuracy in the spatial maze than females from other rearing groups, and showed significant reduction in total errors (courtship display group) or latency to reward (coercion group) over successive trials. These more predictable environments (one tactic), and not the more complex environments (two tactics), showed evidence for spatial learning. The results are discussed in light of the existing literature on two components of environmental change (environmental predictability and the certainty with which cues predict the best behavioral response) and their effect on the development of cognitive abilities.
- Award ID(s):
- 1911826
- NSF-PAR ID:
- 10408505
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 10
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Objectives Chimpanzees (
Pan troglodytes ) are notable for exhibiting high levels of male‐to‐female aggression. Much of this aggression from adult males serves sexually coercive functions. Despite being smaller and lower‐ranking than adult males, adolescent males also engage in regular aggression against adult females. Here, we test whether the primary function of this aggression is sexual coercion, as in adult males, or, alternatively, whether adolescent males use aggression to establish social dominance over females.Materials and Methods We analyzed 1771 copulations and 1812 instances of male‐initiated aggression between adolescent males (aged nine through 14 years) and adult females across 21 years of observation of the Kanyawara chimpanzee community in Kibale National Park, Uganda.
Results Our test of the sexual coercion hypothesis revealed that adolescent males did not selectively target cycling females for aggression, nor did aggression against cycling females predict rates of copulation with those females. Our test of the social dominance hypothesis showed that males succeeded in dominating all adult females before, or soon after, dominating their first adult male. Additionally, we found that adolescent males dominated females approximately in the order of the females' own ranks, from the bottom to the top of the female hierarchy.
Discussion Our data illustrate that the establishment of social dominance was more important than sexual coercion in explaining patterns of adolescent male aggression toward females. In comparison, evidence for sexual coercion was clear and compelling in adult males. These findings highlight that the primary function of male‐to‐female aggression differs between adolescent and adult males.
-
Abstract In many slowly developing mammal species, males reach sexual maturity well before they develop secondary sexual characteristics. Sexually mature male orangutans have exceptionally long periods of developmental arrest. The two male morphs have been associated with behavioral alternative reproductive tactics, but this interpretation is based on cross‐sectional analyses predominantly of Northwest Sumatran populations. Here we present the first longitudinal analyses of behavioral changes of 10 adult males that have been observed in both unflanged and flanged morph. We also analyzed long‐term behavioral data on an additional 143 individually identified males from two study sites, Suaq (Sumatra,
Pongo abelii ) and Tuanan (Borneo,Pongo pygmaeus wurmbii ), to assess male mating tactics cross‐sectionally in relation to population, male morph (unflanged and flanged), and other socio‐ecological factors. Both our longitudinal and cross‐sectional results confirm and refine previous cross‐sectional accounts of the differences in mating tactics between the unflanged and the flanged male morphs. In the unflanged morph, males exhibit higher sociability, particularly with females, and higher rates of both copulation and sexual coercion than in the flanged morph. Based on our results and those of previous studies showing that females prefer flanged males, and that flanged males have higher reproductive success, we conclude that unflanged males face a trade‐off between avoiding male‐male contest competition and gaining mating access to females, and thus follow a “best‐of‐a‐bad‐job” mating strategy. -
Abstract The primate adolescent period is characterized by a series of changes in physiology, behavior, and social relationships. Orangutans have the slowest life history and the longest period of dependency of all primates. As members of a semisolitary species with high levels of sexual coercion, adolescent female orangutans face a unique combination of challenges when achieving independence from their mother. This study examined the mating behavior of adolescent female orangutans and compared it with that of adult females to assess whether mating behavior reflects distinct strategies at these different points in the life cycle. Data were collected in Gunung Palung National Park on the island of Borneo over 20 years. Mating events from adolescent (
n = 19) and adult females (n = 26) were scored and compared. Adolescent female mating events had significantly higher mating scores (indicating more proceptivity) than those of adult females (β = 1.948,p = .001). Adolescent females also engaged in elaborate sociosexual interactions with different flanged males, behaviors that were never observed during mating events of adult females. These interactions involved characteristic behavior on the part of both the adolescent females and the flanged males. Given these findings and the documentation of similar accounts of adolescent female–flanged male mating from the island of Sumatra, we propose that adolescent female orangutans display distinctive behavioral repertoires throughout the genusPongo which serves to overcome male ambivalence toward nulliparous females, establish familiarity, and evaluate coercive tendencies in flanged males. We suggest that these behavioral patterns are an integral part of female social development in a female philopatric, but highly dispersed species where consistent social support is absent after ranging independence is achieved. -
Abstract Temperature influences the expression of a wide range of behavioral traits in ectotherms, including many involved in the initiation of pair formation and mating. Although opportunities to mate are thought to be greatest when male and female activity overlap, sex‐specific behaviors and physiology could result in mismatched thermal optima for male and female courtship. Here, we investigate how conflicts in the thermal sensitivity of male and female courtship activity affect patterns of mating across temperatures in
Enchenopa binotata treehoppers (Hemiptera: Membracidae). These plant‐feeding insects coordinate mating with plant‐borne vibrational signals exchanged in male–female duets prior to pair formation. We manipulated temperature across an ecologically relevant range (18–36ºC) and tested the likelihood of individual male and femaleE. binotata to engage in courtship activity using vibrational playbacks. We then staged male–female mating interactions across the same temperature range and quantified the thermal sensitivity of mating‐related behaviors across stages of mating. Specifically, we measured the timing of duetting, the likelihood for key pre‐copulatory behaviors to occur, whether the pair mated, and copulation duration. We found sex‐specific thermal sensitivity in courtship activity: Males showed a clear peak of activity at intermediate temperatures (27–30ºC), while females showed highest activity at the hotter thermal extreme. Mating rates, courtship duets, and copulatory attempts were less likely to occur at thermal extremes. Also, duetting occurred earlier and copulation was shortest at higher temperatures. Overall, our data suggest that sexes differ in how temperature affects mating‐related activity and some processes involved in mate coordination may be more sensitive than others across variable thermal environments.