skip to main content


Title: Pax3/7 regulates neural tube closure and patterning in a non-vertebrate chordate
Pax3/7 factors play numerous roles in the development of the dorsal nervous system of vertebrates. From specifying neural crest at the neural plate borders, to regulating neural tube closure and patterning of the resulting neural tube. However, it is unclear which of these roles are conserved in non-vertebrate chordates. Here we investigate the expression and function of Pax3/7 in the model tunicate Ciona. Pax3/7 is expressed in neural plate border cells during neurulation, and in central nervous system progenitors shortly after neural tube closure. We find that separate cis- regulatory elements control the expression in these two distinct lineages. Using CRISPR/Cas9-mediated mutagenesis, we knocked out Pax3/7 in F0 embryos specifically in these two separate territories. Pax3/7 knockout in the neural plate borders resulted in neural tube closure defects, suggesting an ancient role for Pax3/7 in this chordate-specific process. Furthermore, knocking out Pax3/7 in the neural impaired Motor Ganglion neuron specification, confirming a conserved role for this gene in patterning the neural tube as well. Taken together, these results suggests that key functions of Pax3/7 in neural tube development are evolutionarily ancient, dating back at least to the last common ancestor of vertebrates and tunicates.  more » « less
Award ID(s):
1940743
NSF-PAR ID:
10408611
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Cell and Developmental Biology
Volume:
10
ISSN:
2296-634X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Takatsuru, Yusuke (Ed.)

    The generation of neurons in the central nervous system is a complex, stepwise process necessitating the coordinated activity of mitotic progenitors known as radial glia. Following neural tube closure, radial glia undergo a period of active proliferation to rapidly expand their population, creating a densely packed neurepithelium. Simultaneously, radial glia positioned across the neural tube are uniquely specified to produce diverse neuronal sub-types. Although these cellular dynamics are well studied, the molecular mechanisms governing them are poorly understood. The six-transmembrane Glycerophosphodiester Phosphodiesterase proteins (GDE2, GDE3, and GDE6) comprise a family of cell-surface enzymes expressed in the embryonic nervous system. GDE proteins can release Glycosylphosphatidylinositol-anchored proteins from the cell surfaceviacleavage of their lipid anchor. GDE2 has established roles in motor neuron differentiation and oligodendrocyte maturation, and GDE3 regulates oligodendrocyte precursor cell proliferation. Here, we describe a role for GDE6 in early neural tube development. Using RNAscope, we show thatGde6mRNA is expressed by ventricular zone progenitors in the caudal neural tube. Utilizing in-ovo electroporation, we show that GDE6 overexpression promotes neural tube hyperplasia and ectopic growths of the neurepithelium. At later stages, electroporated embryos exhibit an expansion of the ventral patterning domains accompanied by reduced cross-repression. Ultimately, electroporated embryos fail to produce the full complement of post-mitotic motor neurons. Our findings indicate that GDE6 overexpression significantly affects radial glia function and positions GDE6 as a complementary factor to GDE2 during neurogenesis.

     
    more » « less
  2. Abstract

    The cell type-specific expression of key transcription factors is central to development and disease.Brachyury/T/TBXTis a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalianBrachyury/T/TBXTgene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conservedBrachyury-controlling notochord enhancers,T3,C, andI, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers,in cisdeletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The threeBrachyury-driving notochord enhancers are conserved beyond mammals in thebrachyury/tbxtbloci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers forBrachyury/T/TBXTBnotochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.

     
    more » « less
  3. Abstract

    Primary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation.

     
    more » « less
  4. Despite its importance in central nervous system development, development of the human neural tube (NT) remains poorly understood, given the challenges of studying human embryos, and the developmental divergence between humans and animal models. We report a human NT development model, in which NT-like tissues, neuroepithelial (NE) cysts, are generated in a bioengineered neurogenic environment through self-organization of human pluripotent stem cells (hPSCs). NE cysts correspond to the neural plate in the dorsal ectoderm and have a default dorsal identity. Dorsal-ventral (DV) patterning of NE cysts is achieved using retinoic acid and/or sonic hedgehog and features sequential emergence of the ventral floor plate, P3, and pMN domains in discrete, adjacent regions and a dorsal territory progressively restricted to the opposite dorsal pole. This hPSC-based, DV patterned NE cyst system will be useful for understanding the self-organizing principles that guide NT patterning and for investigations of neural development and neural disease. 
    more » « less
  5. Abstract Key Points

    Axon guidance ligand and receptor expression often persist into adulthood in neuronal and non‐neuronal tissues alike.

    Recent work in genetic model organisms highlights the diverse roles of guidance factors in adult tissues.

    Guidance factors are required intrinsically in a variety of adult tissues but can also regulate tissue function indirectly via functions in the nervous and vascular systems.

    Studies outside of the nervous system are likely to enhance our understanding of these diverse siganling molecules and could suggest novel signaling modalities in the nervous system.

     
    more » « less