Multidecadal trends in ultraviolet radiation, temperature, and dissolved oxygen have altered vertical habitat availability for Daphnia in temperate Lake Giles, USA
                        
                    More Like this
- 
            Abstract Bacteria contain conserved mechanisms to control the intracellular levels of metal ions. Metalloregulatory transcription factors bind metal cations and play a central role in regulating gene expression of metal transporters. Often, these transcription factors regulate transcription by binding to a specific DNA sequence in the promoter region of target genes. Understanding the preferred DNA‐binding sequence for transcriptional regulators can help uncover novel gene targets and provide insight into the biological role of the transcription factor in the host organism. Here, we identify consensus DNA‐binding sequences and subsequent transcription regulatory networks for two metalloregulators from the ferric uptake regulator (FUR) and diphtheria toxin repressor (DtxR) superfamilies inThermus thermophilusHB8. By homology search, we classify the DtxR homolog as a manganese‐specific, MntR (TtMntR), and the FUR homolog as a peroxide‐sensing, PerR (TtPerR). Both transcription factors repress separate ZIP transporter genes in vivo, andTtPerR acts as a bifunctional transcription regulator by activating the expression of ferric and hemin transport systems. We showTtPerR andTtMntR bind DNA in the presence of manganese in vitro and in vivo; however,TtPerR is unable to bind DNA in the presence of iron, likely due to iron‐mediated histidine oxidation. Unlike canonical PerR homologs,TtPerR does not appear to contribute to peroxide detoxification. Instead, theTtPerR regulon and DNA binding sequence are more reminiscent of Fur or Mur homologs. Collectively, these results highlight the similarities and differences between two metalloregulatory superfamilies and underscore the interplay of manganese and iron in transcription factor regulation.more » « less
- 
            Abstract The European corn borer (Ostrinia nubilalis) is an agricultural pest and burgeoning model for research on speciation, seasonal adaptation and insect resistance management. Although previous work inO. nubilalishas identified genes associated with differences in life cycle, reproduction, and resistance toBttoxins, the general lack of a robust gene‐editing protocol forO. nubilalishas been a barrier to functional validation of candidate genes. Here, we demonstrate an efficient and practical methodology for heritable gene mutagenesis inO. nubilalisusing the CRISPR/Cas9 genome editing system. Precise loss‐of‐function (LOF) mutations were generated at two circadian clock genes,period(per) andpigment‐dispersing factor receptor(pdfr), and a developmental gene,prothoracicotropic hormone(ptth). Precluding the need for a visible genetic marker, gene‐editing efficiency remained high across different single guide RNAs (sgRNA) and germline transmission of mutations to F1offspring approached 100%. When single or dual sgRNAs were injected at a high concentration, gene‐specific phenotypic differences in behaviour and development were identified in F0mutants. Specifically, F0gene mutants demonstrated that PER, but not PDFR, is essential for normal timing of eclosion. PTTH F0mutants were significantly heavier and exhibited a higher incidence of diapause. This work will accelerate future studies of gene function inO. nubilalisand facilitate the development of similar screens in other Lepidopteran and non‐model insects.more » « less
- 
            ABSTRACT Motivated by spectroscopic confirmation of three overdense regions in the COSMOS field at z ∼ 3.35, we analyse the uniquely deep multiwavelength photometry and extensive spectroscopy available in the field to identify any further related structure. We construct a three-dimensional density map using the Voronoi tesselation Monte Carlo method and find additional regions of significant overdensity. Here, we present and examine a set of six overdense structures at 3.20 < z < 3.45 in the COSMOS field, the most well-characterized of which, PCl J0959 + 0235, has 80 spectroscopically confirmed members and an estimated mass of 1.35 × 1015 M⊙, and is modelled to virialize at z ∼ 1.5−2.0. These structures contain 10 overdense peaks with >5σ overdensity separated by up to 70 cMpc, suggestive of a proto-supercluster similar to the Hyperion system at z ∼ 2.45. Upcoming photometric surveys with JWST such as COSMOS-Web, and further spectroscopic follow-up will enable more extensive analysis of the evolutionary effects that such an environment may have on its component galaxies at these early times.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    