We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizations
We present
- NSF-PAR ID:
- 10408747
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2515-5172
- Format(s):
- Medium: X Size: Article No. 77
- Size(s):
- Article No. 77
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ ≲ 10−4and pair-loading factorsZ ±≲ 10 are studied, whereZ ±is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσ exceeds a critical valueσ Lthat decreases withZ ±. Atσ ≲σ Lthe shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease withZ ±, leading to lowerσ L. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales as . (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low asσ ≈ 5 × 10−6. The ions then become essentially thermal with mean energy , while electrons form a nonthermal tail, extending from to . Whenσ = 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here, the maximum energy of the nonthermal ions and electrons keeps growing over the duration of the simulation. Alongside the simulations, we develop theoretical estimates consistent with the numerical results. Our findings have important implications for models of early gamma-ray burst afterglows. -
Abstract We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (
β p= 0.25) collisionless ion–electron shocks with mass ratiom i/m e= 200, fast Mach number –4, and upstream magnetic field angleθ Bn= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, -parallel electric potential jump, ΔB ϕ ∥, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ ∥, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ ∥in our low-β pshocks. We further focus on twoθ Bn= 65° shocks: a ( ) case with a long, 30d iprecursor of whistler waves along , and a ( ) case with a shorter, 5d iprecursor of whistlers oblique to both and ;B d iis the ion skin depth. Within the precursors,ϕ ∥has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the ,θ Bn= 65° case,ϕ ∥shows a weak dependence on the electron plasma-to-cyclotron frequency ratioω pe/Ωce, andϕ ∥decreases by a factor of 2 asm i/m eis raised to the true proton–electron value of 1836. -
Abstract We compare 500 pc scale, resolved observations of ionized and molecular gas for the
z ∼ 0.02 starbursting disk galaxy IRAS08339+6517, using measurements from KCWI and NOEMA. We explore the relationship of the star-formation-driven ionized gas outflows with colocated galaxy properties. We find a roughly linear relationship between the outflow mass flux ( ) and star formation rate surface density (ΣSFR), , and a strong correlation between and the gas depletion time, such that . Moreover, we find these outflows are so-calledbreakout outflows, according to the relationship between the gas fraction and disk kinematics. Assuming that ionized outflow mass scales with total outflow mass, our observations suggest that the regions of highest ΣSFRin IRAS08 are removing more gas via the outflow than through the conversion of gas into stars. Our results are consistent with a picture in which the outflow limits the ability of a region of a disk to maintain short depletion times. Our results underline the need for resolved observations of outflows in more galaxies. -
Abstract State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radius
r scaled to Schwarzschild units and coronal mass accretion rate to Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radiusr b ∼ 103(α /0.3)−2, whereα is the viscosity parameter. Gas evaporates from the disk to the corona forr >r b , and condenses back forr <r b . Atr b , reaches its maximum, . If atr ≫r b the thin disk accretes with , then the disk evaporates fully before reachingr b , giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andr b remains unchanged. This model predicts strong coronal winds forr >r b , and aT ∼ 5 × 108K Compton-cooled corona forr <r b . Two-temperature effects are ignored, but may be important at small radii. -
Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral at
z > 7 and largely ionized byz ∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz = 6–7 is poorly constrained. We present new constraints on atz ∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z < 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyα and Lyβ forests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz ∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1σ ), (1σ ), and (1σ ). The dark pixel fractions atz > 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018.