skip to main content


Title: Captured QBO‐MJO Connection in a Subseasonal Prediction System
Abstract

The quasi‐biennial oscillation (QBO) impacts the Madden‐Julian Oscillation (MJO) activity with a stronger MJO in QBO easterly (QBOE) than QBO westerly (QBOW) winters. However, this relationship is poorly represented in the current generation climate models. For the first time, this paper applies a stratospheric zonal‐mean nudging in a subseasonal prediction system to capture it. Two strong MJO cases in a QBO‐neutral winter are investigated. The QBO temperature and zonal wind anomalies are added separately as well as together to the stratosphere using nudging in MJO case hindcast. Only by nudging the QBO temperature anomalies while leaving the zonal wind free, can the prediction system capture the observed QBO‐MJO connection. The tropopause instability is found positively correlated to the MJO amplitude, but it cannot fully explain the captured connection. The free‐evolving zonal wind anomalies in the stratosphere due to the nudged QBO temperature are crucial for the captured connection.

 
more » « less
NSF-PAR ID:
10408894
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We examine the hypothesis that the observed connection between the stratospheric quasi-biennial oscillation (QBO) and the strength of the Madden–Julian oscillation (MJO) is modulated by the sea surface temperature (SST)—for example, by El Niño–Southern Oscillation (ENSO). A composite analysis shows that, globally, La Niña SSTs are remarkably similar to those that occur during the easterly phase of the QBO. A maximum covariance analysis suggests that MJO power and SST are strongly linked on both the ENSO time scale and the QBO time scale. We analyze simulations with a modified configuration of version 2 of the Community Earth System Model, with a high top and fine vertical resolution. The model is able to simulate ENSO, the QBO, and the MJO. The ocean-coupled version of the model simulates the QBO, ENSO, and MJO, but does not simulate the observed QBO–MJO connection. When driven with prescribed observed SST anomalies based on composites for QBO east and QBO west (QBOE and QBOW), however, the same atmospheric model produces a modest enhancement of MJO power during QBOE relative to QBOW, as observed. We explore the possibility that the SST anomalies are forced by the QBO itself. Indeed, composite Hovmöller diagrams based on observations show the propagation of QBO zonal wind anomalies all the way from the upper stratosphere to the surface. Also, subsurface ocean temperature composites reveal a similarity between the western Pacific and Indian Ocean subsurface signal between La Niña and QBOE.

     
    more » « less
  2. null (Ed.)
    Abstract Observational studies show a strong connection between the intraseasonal Madden-Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO): the boreal winter MJO is stronger, more predictable, and has different teleconnections when the QBO in the lower stratosphere is easterly versus westerly. Despite the strength of the observed connection, global climate models do not produce an MJO-QBO link. Here the authors use a current-generation ocean-atmosphere coupled NASA Goddard Institute for Space Studies global climate model (Model E2.1) to examine the MJO-QBO link. To represent the QBO with minimal bias, the model zonal mean stratospheric zonal and meridional winds are relaxed to reanalysis fields from 1980-2017. The model troposphere, including the MJO, is allowed to freely evolve. The model with stratospheric nudging captures QBO signals well, including QBO temperature anomalies. However, an ensemble of nudged simulations still lacks an MJO-QBO connection. 
    more » « less
  3. Abstract

    Recent observations have indicated significant modulation of the Madden–Julian oscillation (MJO) by the phase of the stratospheric quasi-biennial oscillation (QBO) during boreal winter. Composites of the MJO show that upper-tropospheric ice cloud fraction and water vapor anomalies are generally collocated, and that an eastward tilt with height in cloud fraction exists. Through radiative transfer calculations, it is shown that ice clouds have a stronger tropospheric radiative forcing than do water vapor anomalies, highlighting the importance of incorporating upper-tropospheric–lower-stratospheric processes into simple models of the MJO. The coupled troposphere–stratosphere linear model previously developed by the authors is extended by including a mean wind in the stratosphere and a prognostic equation for cirrus clouds, which are forced dynamically and allowed to modulate tropospheric radiative cooling, similar to the effect of tropospheric water vapor in previous formulations. Under these modifications, the model still produces a slow, eastward-propagating mode that resembles the MJO. The sign of zonal mean wind in the stratosphere is shown to control both the upward wave propagation and tropospheric vertical structure of the mode. Under varying stratospheric wind and interactive cirrus cloud radiation, the MJO-like mode has weaker growth rates under stratospheric westerlies than easterlies, consistent with the observed MJO–QBO relationship. These results are directly attributable to an enhanced barotropic mode under QBO easterlies. It is also shown that differential zonal advection of cirrus clouds leads to weaker growth rates under stratospheric westerlies than easterlies. Implications and limitations of the linear theory are discussed.

    Significance Statement

    Recent observations have shown that the strength of the Madden–Julian oscillation (MJO), a global-scale envelope of wind and rain that slowly moves eastward in the tropics and dominates global-weather variations on time scales of around a month, is strongly influenced by the direction of the winds in the lower stratosphere, the layer of the atmosphere that lies above where weather occurs. So far, modeling studies have been unable to reproduce this connection in global climate models. The purpose of this study is to investigate the mechanisms through which the stratosphere can modulate the MJO, by using simple theoretical models. In particular, we point to the role that ice clouds high in the atmosphere play in influencing the MJO.

     
    more » « less
  4. Abstract Key Findings

    • Rossby wave breaking (RWB) is enhanced in the height regions where the zero‐wind line is shifted into the winter hemisphere and where the QBO‐induced meridional circulation is directed toward the winter pole

    • Polar vortex responses differ in terms of the height location of RWB, zonal wave‐number‐dependent disturbances and seasonal development

    • Significant increase in wave‐1 occurs when the QBO is in its easterly phase

    • A cumulative effect of RWB results in enhanced wave forcing of zonal wave‐numbers 2 and 3 during westerly QBO, which manifests in a sign reversal of the Holton–Tan effect in late winter.

     
    more » « less
  5. null (Ed.)
    Abstract The stratospheric quasi-biennial oscillation (QBO) induces temperature anomalies in the lower stratosphere and tropical tropopause layer (TTL) that are cold when lower-stratospheric winds are easterly and warm when winds are westerly. Recent literature has indicated that these QBO temperature anomalies are potentially important in influencing the tropical troposphere, and particularly in explaining the relationship between the QBO and the Madden–Julian oscillation (MJO). The authors examine the variability of QBO temperature anomalies across several time scales using reanalysis and observational datasets. The authors find that, in boreal winter relative to other seasons, QBO temperature anomalies are significantly stronger (i.e., colder in the easterly phase of the QBO and warmer in the westerly phase of the QBO) on the equator, but weaker off the equator. The equatorial and subtropical changes compensate such that meridional temperature gradients and thus (by thermal wind balance) equatorial zonal wind anomalies do not vary in amplitude as the temperature anomalies do. The same pattern of stronger on-equatorial and weaker off-equatorial QBO temperature anomalies is found on decadal time scales: stronger anomalies are seen for 1999–2019 compared to 1979–99. The causes of these changes to QBO temperature anomalies, as well as their possible relevance to the MJO–QBO relationship, are not known. 
    more » « less