Bacteria that assemble in phycospheres surrounding living phytoplankton cells metabolize a substantial proportion of ocean primary productivity. Yet the type and extent of interactions occurring among species that colonize these micron-scale “hot spot” environments are challenging to study. We identified genes that mediate bacterial interactions in phycosphere communities by culturing a transposon mutant library of copiotrophic bacterium Ruegeria pomeroyi DSS-3 with the diatom Thalassiosira pseudonana CCMP1335 as the sole source of organic matter in the presence or absence of other heterotrophic bacterial species. The function of genes having significant effects on R. pomeroyi fitness indicated explicit cell–cell interactions initiated in the multibacterial phycospheres. We found that R. pomeroyi simultaneously competed for shared substrates while increasing reliance on substrates that did not support the other species’ growth. Fitness outcomes also indicated that the bacterium competed for nitrogen in the forms of ammonium and amino acids; obtained purines, pyrimidines, and cofactors via crossfeeding; both initiated and defended antagonistic interactions; and sensed an environment with altered oxygen and superoxide levels. The large genomes characteristic of copiotrophic marine bacteria are hypothesized to enable responses to dynamic ecological challenges occurring at the scale of microns. Here, we discover >200 nonessential genes implicated in the management of fitness costs and benefits of membership in a globally significant bacterial community.
more »
« less
Functional annotation and importance of marine bacterial transporters of plankton exometabolites
Abstract Metabolite exchange within marine microbial communities transfers carbon and other major elements through global cycles and forms the basis of microbial interactions. Yet lack of gene annotations and concern about the quality of existing ones remain major impediments to revealing currencies of carbon flux. We employed an arrayed mutant library of the marine bacterium Ruegeria pomeroyi DSS-3 to experimentally annotate substrates of organic compound transporter systems, using mutant growth and compound drawdown analyses to link transporters to their cognate substrates. Mutant experiments verified substrates for thirteen R. pomeroyi transporters. Four were previously hypothesized based on gene expression data (taurine, glucose/xylose, isethionate, and cadaverine/putrescine/spermidine); five were previously hypothesized based on homology to experimentally annotated transporters in other bacteria (citrate, glycerol, N-acetylglucosamine, fumarate/malate/succinate, and dimethylsulfoniopropionate); and four had no previous annotations (thymidine, carnitine, cysteate, and 3-hydroxybutyrate). These bring the total number of experimentally-verified organic carbon influx transporters to 18 of 126 in the R. pomeroyi genome. In a longitudinal study of a coastal phytoplankton bloom, expression patterns of the experimentally annotated transporters linked them to different stages of the bloom, and also led to the hypothesis that citrate and 3-hydroxybutyrate were among the most highly available bacterial substrates. Improved functional annotation of the gatekeepers of organic carbon uptake is critical for deciphering carbon flux and fate in microbial ecosystems.
more »
« less
- Award ID(s):
- 2019589
- PAR ID:
- 10408956
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- ISME Communications
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2730-6151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria ( Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.more » « less
-
Abstract Growing evidence suggests that interactions among heterotrophic microorganisms influence the efficiency and rate of organic matter turnover. These interactions are dynamic and shaped by the composition and availability of resources in their surrounding environment. Heterotrophic microorganisms inhabiting marine environments often encounter fluctuations in the quality and quantity of carbon inputs, ranging from simple sugars to large, complex compounds. Here, we experimentally tested how the chemical complexity of carbon substrates affects competition and growth dynamics between two heterotrophic marine isolates. We tracked cell density using species-specific polymerase chain reaction (PCR) assays and measured rates of microbial CO2 production along with associated isotopic signatures (13C and 14C) to quantify the impact of these interactions on organic matter remineralization. The observed cell densities revealed substrate-driven interactions: one species exhibited a competitive advantage and quickly outgrew the other when incubated with a labile compound whereas both species seemed to coexist harmoniously in the presence of more complex organic matter. Rates of CO2 respiration revealed that coincubation of these isolates enhanced organic matter turnover, sometimes by nearly 2-fold, compared to their incubation as mono-cultures. Isotopic signatures of respired CO2 indicated that coincubation resulted in a greater remineralization of macromolecular organic matter. These results demonstrate that simple substrates promote competition whereas high substrate complexity reduces competitiveness and promotes the partitioning of degradative activities into distinct niches, facilitating coordinated utilization of the carbon pool. Taken together, this study yields new insight into how the quality of organic matter plays a pivotal role in determining microbial interactions within marine environments.more » « less
-
Abstract Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups. In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatom Thalassiosira pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release, and transfer to assembled bacterial communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling.more » « less
-
Abstract The heterotrophic marine bacterium,Ruegeria pomeroyi, was experimentally cultured under environmentally realistic carbon conditions and with a tracer-level addition of13C-labeled leucine to track bacterial protein biosynthesis through growth phases. A combination of methods allowed observation of real-time bacterial protein production to understand metabolic priorities through the different growth phases. Over 2000 proteins were identified in each experimental culture from exponential and stationary growth phases. Within two hours of the13C-labeled leucine addition,R.pomeroyisignificantly assimilated the newly encountered substrate into new proteins. This dataset provides a fundamental baseline for understanding growth phase differences in molecular physiology of a cosmopolitan marine bacterium.more » « less
An official website of the United States government
