skip to main content


Title: Three-dimensional Dynamics of Strongly Twisted Magnetar Magnetospheres: Kinking Flux Tubes and Global Eruptions
Abstract

The origins of the various outbursts of hard X-rays from magnetars (highly magnetized neutron stars) are still unknown. We identify instabilities in relativistic magnetospheres that can explain a range of X-ray flare luminosities. Crustal surface motions can twist the magnetar magnetosphere by shifting the frozen-in footpoints of magnetic field lines in current-carrying flux bundles. Axisymmetric (2D) magnetospheres exhibit strong eruptive dynamics, i.e., catastrophic lateral instabilities triggered by a critical footpoint displacement ofψcritπ. In contrast, our new three-dimensional (3D) twist models with finite surface extension capture important non-axisymmetric dynamics of twisted force-free flux bundles in dipolar magnetospheres. Besides the well-established global eruption resulting (as in 2D) from lateral instabilities, such 3D structures can develop helical, kink-like dynamics, and dissipate energy locally (confined eruptions). Up to 25% of the induced twist energy is dissipated and available to power X-ray flares in powerful global eruptions, with most of our models showing an energy release in the range of the most common X-ray outbursts, ≲1043erg. Such events occur when significant energy builds up while deeply buried in the dipole magnetosphere. Less energetic outbursts likely precede powerful flares, due to intermittent instabilities and confined eruptions of a continuously twisting flux tube. Upon reaching a critical state, global eruptions produce the necessary Poynting-flux-dominated outflows required by models prescribing the fast radio burst production in the magnetar wind—for example, via relativistic magnetic reconnection or shocks.

 
more » « less
Award ID(s):
1909458 2206610 2206607
NSF-PAR ID:
10408991
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
947
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L34
Size(s):
["Article No. L34"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The origin of ultra-rapid flares of very high-energy radiation from active galactic nuclei remains elusive. Magnetospheric processes, occurring in the close vicinity of the central black hole, could account for these flares. Aims. Our aim is to bridge the gap between simulations and observations by synthesizing gamma-ray light curves in order to characterize the activity of a black hole magnetosphere, using kinetic simulations. Methods. We performed global axisymmetric 2D general-relativistic particle-in-cell simulations of a Kerr black hole magnetosphere. We included a self-consistent treatment of radiative processes and plasma supply, as well as a realistic magnetic configuration, with a large-scale equatorial current sheet. We coupled our particle-in-cell code with a ray-tracing algorithm in order to produce synthetic light curves. Results. These simulations show a highly dynamic magnetosphere, as well as very efficient dissipation of the magnetic energy. An external supply of magnetic flux is found to maintain the magnetosphere in a dynamic state, otherwise the magnetosphere settles in a quasi-steady Wald-like configuration. The dissipated energy is mostly converted to gamma-ray photons. The light curves at low viewing angle (face-on) mainly trace the spark gap activity and exhibit high variability. On the other hand, no significant variability is found at high viewing angle (edge-on), where the main contribution comes from the reconnecting current sheet. Conclusions. We observe that black hole magnetospheres with a current sheet are characterized by a very high radiative efficiency. The typical amplitude of the flares in our simulations is lower than is detected in active galactic nuclei. These flares could result from the variation in parameters external to the black hole. 
    more » « less
  2. Context. Accreting black holes (BHs) may be surrounded by a highly magnetized plasma threaded by an organized poloidal magnetic field. Nonthermal flares and power-law spectral components at high energy could originate from a hot, collisionless, and nearly force-free corona. The jets we often observe from these systems are believed to be rotation-powered and magnetically driven. Aims. We study axisymmetric BH magnetospheres, where a fraction of the magnetic field lines anchored in a surrounding disk are connected to the event horizon of a rotating BH. For different BH spins, we identify the conditions and sites of magnetic reconnection within 30 gravitational radii. Methods. With the fully general relativistic particle-in-cell code GRZeltron , we solve the time-dependent dynamics of the electron–positron pair plasma and of the electromagnetic fields around the BH. The aligned disk is represented by a steady and perfectly conducting plasma in Keplerian rotation, threaded by a dipolar magnetic field. Results. For prograde disks around Kerr BHs, the topology of the magnetosphere is hybrid. Twisted open magnetic field lines crossing the horizon power a Blandford-Znajek jet, while open field lines with their footpoint beyond a critical distance on the disk could launch a magneto-centrifugal wind. In the innermost regions, coupling magnetic field lines ensure the transfer of significant amounts of angular momentum and energy between the BH and the disk. From the Y point at the intersection of these three regions, a current sheet forms where vivid particle acceleration via magnetic reconnection takes place. We compute the synchrotron images of the current sheet emission. Conclusions. Our estimates for jet power and BH–disk exchanges match those derived from purely force-free models. Particles are accelerated at the Y point, which acts as a heat source for the so-called corona. It provides a physically motivated ring-shaped source of hard X-rays above the disk for reflection models. Episodic plasmoid ejection might explain millisecond flares observed in Cygnus X-1 in the high-soft state, but are too fast to account for daily nonthermal flares from Sgr A * . Particles flowing from the Y point down to the disk could produce a hot spot at the footpoint of the outermost closed magnetic field line. 
    more » « less
  3. ABSTRACT

    We study dynamics of relativistic coronal mass ejections (CMEs), from launching by shearing of foot-points (either slowly – the ‘Solar flare’ paradigm, or suddenly – the ‘star quake’ paradigm), to propagation in the preceding magnetar wind. For slow shear, most of the energy injected into the CME is first spent on the work done on breaking through the overlaying magnetic field. At later stages, sufficiently powerful CMEs may lead to the ‘detonation’ of a CME and opening of the magnetosphere beyond some equipartition radius req, where the decreasing energy of the CME becomes larger than the decreasing external magnetospheric energy. Post-CME magnetosphere relaxes via the formation of a plasmoid-mediated current sheet, initially at ∼req, and slowly reaching the light cylinder. Both the location of the foot-point shear and the global magnetospheric configuration affect the frequent/weak versus rare/powerful CME dichotomy – to produce powerful flares, the slow shear should be limited to field lines that close in near the star. After the creation of a topologically disconnected flux tube, the tube quickly (at ∼ the light cylinder) comes into force-balance with the preceding wind and is passively advected/frozen in the wind afterward. For fast shear (a local rotational glitch), the resulting large amplitude Alfvén waves lead to the opening of the magnetosphere (which later recovers similarly to the slow shear case). At distances much larger than the light cylinder, the resulting shear Alfvén waves propagate through the wind non-dissipatively.

     
    more » « less
  4. ABSTRACT

    The time evolution of high-energy synchrotron radiation generated in a relativistic pair plasma energized by reconnection of strong magnetic fields is investigated with 2D and 3D particle-in-cell (PIC) simulations. The simulations in this 2D/3D comparison study are conducted with the radiative PIC code OSIRIS, which self-consistently accounts for the synchrotron radiation reaction on the emitting particles, and enables us to explore the effects of synchrotron cooling. Magnetic reconnection causes compression of the plasma and magnetic field deep inside magnetic islands (plasmoids), leading to an enhancement of the flaring emission, which may help explain some astrophysical gamma-ray flare observations. Although radiative cooling weakens the emission from plasmoid cores, it facilitates additional compression there, further amplifying the magnetic field B and plasma density n, and thus partially mitigating this effect. Novel simulation diagnostics utilizing 2D histograms in the n-B space are developed and used to visualize and quantify the effects of compression. The n-B histograms are observed to be bounded by relatively sharp power-law boundaries marking clear limits on compression. Theoretical explanations for some of these compression limits are developed, rooted in radiative resistivity or 3D kinking instabilities. Systematic parameter-space studies with respect to guide magnetic field, system size, and upstream magnetization are conducted and suggest that stronger compression, brighter high-energy radiation, and perhaps significant quantum electrodynamic effects such as pair production, may occur in environments with larger reconnection-region sizes and higher magnetization, particularly when magnetic field strengths approach the critical (Schwinger) field, as found in magnetar magnetospheres.

     
    more » « less
  5. Abstract Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high-resolution (5376 × 2304 × 2304 cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, nonaxisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet’s magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A* observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in the mass accretion rate during the flare and the resulting low-density magnetosphere make it easier for very-high-energy photons produced by reconnection-accelerated particles to escape. The extreme-resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare. 
    more » « less