skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reduction reactions at metal/non-aqueous interfaces can be sensed with the turn-on fluorophore resazurin
Interfacial oxidation–reduction reactions have important applications in corrosion and catalysis, but traditional electrochemical cell methods cannot be used to study these reactions in non-conducting environments such as non-aqueous solvents. We demonstrate that the molecule resazurin that can be reduced to highly-fluorescent resorufin is compatible for sensing in non-aqueous solvents. We characterize the spectral properties of the dyes in ethanol, dimethylformamide (DMF), acetone, and dimethyl sulfoxide (DMSO), showing a ∼10× increase in intensity for “turned-on” resorufin compared to resazurin in all four solvents. We then apply resazurin to sense corrosive reduction reactions at iron surfaces. Increases in fluorescence intensity due to resazurin reduction to resorufin are observed in ethanol, acetone, and DMSO, while DMF had no turn-on. Our work shows that fluorescent dyes have considerable potential to be used to understand redox reactions in non-aqueous solvents, but care must be taken to understand the interplay between the dye, the solvent, and the reactions occurring.  more » « less
Award ID(s):
2142821
PAR ID:
10409107
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Chemistry Frontiers
ISSN:
2052-1537
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Polymeric membranes for separation of pharmaceutical intermediates/products by organic solvent nanofiltration (OSN) have to be highly resistant to many organic solvents including high-boiling polar aprotic ones, e.g., N- methyl-2-pyrollidone (NMP), dimethylsulfoxide (DMSO), dimethylformamide (DMF). Unless cross-linked, few polymers resist swelling or dissolution in such solvents; however particular perfluoropolymers are resistant to almost all solvents except perfluorosolvents. One such polymer, designated AHP1, a glassy amorphous hydrophobic perfluorinated polymer, has been studied here. Additional perfluoropolymers studied here are hydrophilically modified (HMP2 and HMP3) versions to enhance the flux of polar aprotic solvents. OSN performances of three types of membranes including the hydrophilically modified ones were studied via solvent flux and solute rejection at pressures up to 5000 kPa. The solutes were four active pharmaceutical ingredients (APIs) or pharmaceutical intermediates having molecular weights (MWs) between 432 and 809 Da and three dyes, Oil Blue N (378 Da), Sudan Black B (456 Da), Brilliant Blue R (826 Da). Solvents used were: ethyl acetate, toluene, n- heptane, iso-octane, DMSO, tetrahydrofuran (THF), DMF, acetone, NMP, methanol. Test cells included stirred cells and tangential flow cells. Pure solvent fluxes through three membrane types were characterized using a particular parameter employing various solvent properties. All three membranes achieved high solute rejections around 91–98% at ambient temperatures. HMP2 membrane achieved 95% solute rejection for an API (809 Da) in DMSO at a high temperature, 75 ◦C. A two-stage simulated nanofiltration process achieved 99%+ rejection of a pharmaceutical intermediate (MW, 432 Da) in 75v% NMP-25v% ethyl acetate solution. 
    more » « less
  2. Continuous pin-hole free FA0.78Cs0.22Pb(I0.85Br0.15)3 flms are deposited by gas-assisted slot-die printing under ambient conditions using DMF/DMSO based ink containing Formamdinium Acetate additive. Using a binary solvent mixture of DMF and DMSO is effective in eliminating the non-perovskite phase that occurs when DMF alone is used. Print-speed, gas fow rate and chuck temperature are optimized to realize homogeneous flms with constant bandgap (1.63 eV) over large substrates (2″×4″). The perovskite flms prepared using two solvents DMF and DMF: DMSO (9:1) were incorporated in single junction devices. The resulting devices show improved fll factor with improved power conversion effciency. 
    more » « less
  3. The benthic biolayer is a shallow zone of reactive streambed sediments, widely believed to contribute disproportionately to whole‐stream reactions such as aerobic respiration and contaminant transformation. Quantifying the relative contribution of the biolayer to whole‐stream reactions remains challenging because it requires that hyporheic zone solute transport and reaction heterogeneity are explicitly captured within a single modeling framework. Here, we use field experiments and modeling to quantify the biolayer's aerobic reactivity relative to other stream compartments. We co‐injected and monitored several fluorescent tracers, including the reactive tracer resazurin, into a controlled experimental stream. We characterized reactive transport in the water column and at multiple depths in the hyporheic zone by fitting all data to a new mobile‐immobile model, using resazurin‐to‐resorufin conversion as an indicator of aerobic bioreactivity. Results show that the biolayer converted 8 times more resazurin to resorufin than all other stream compartments, and 80% of this conversion occurred within 2 reach advection times. This hotspot and hot moment behavior is attributed to the biolayer's ability to rapidly acquire, transiently retain, and rapidly degrade stream‐borne solutes. The model analysis shows that the majority of raz‐to‐rru conversion occurs in the biolayer across streams with a wide range of biolayer structural properties, including streams with a biolayer that is less reactive than deeper regions of the hyporheic zone. Together, our results show that the biolayer is a common feature of streams and rivers that should be considered in network‐scale models of aerobic reactivity. 
    more » « less
  4. We develop a Stockmayer fluid model that accounts for the dielectric responses of polar solvents (water, MeOH, EtOH, acetone, 1-propanol, DMSO, and DMF) and NaCl solutions. These solvent molecules are represented by Lennard-Jones (LJ) spheres with permanent dipole moments and the ions by charged LJ spheres. The simulated dielectric constants of these liquids are comparable to experimental values, including the substantial decrease in the dielectric constant of water upon the addition of NaCl. Moreover, the simulations predict an increase in the dielectric constant when considering the influence of ion translations in addition to the orientation of permanent dipoles. 
    more » « less
  5. Polymeric microparticles have been shown to have great impacts in the area of drug delivery, biosensing, and tissue engineering. Electrospray technology, which provides a simple yet effective technique in the creation of microparticles, was utilized in this work. In addition, altering the electrospray experimental parameters such as applied voltage, flow rate, collector distance, solvents, and the polymer-solvent mixtures can result in differences in the size and morphology of the produced microparticles. The effects of the flow rate at (0.15, 0.3, 0.45, 0.6, 0.8, and 1 mL/h) and N, N-Dimethylformamide (DMF)/acetone solvent ratios (20:80, 40:60, 60:40, 80:20, 100:0 v/v) in the production of polyvinylidene fluoride (PVDF) microparticles were studied. Scanning electron microscopy (SEM) was used to observe changes in the morphology of the microparticles, and this revealed that a higher acetone to DMF ratio produces deformed particles, while flow rates at (0.3 and 0.45 mL/h) and a more optimized DMF to acetone solvent ratio (60:40 v/v) produced uniform spherical particles. We discovered from the Raman spectroscopy results that the electrosprayed PVDF microparticles had an increase in piezoelectric β phase compared to the PVDF pellet used in making the microparticles, which in its original form is α phase dominant and non-piezoelectric. 
    more » « less