skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gait-phase specific transverse-plane momenta generation during pre-planned and late-cued 90 degree turns while walking
Abstract Turning while walking is ubiquitous and requires linear and angular momenta generation to redirect the body’s trajectory and rotate towards the new direction of travel. This study examined strategies that healthy young adults used during each gait phase to generate transverse-plane momenta during pre-planned and late-cued 90° turns. During leftward turns, we expected that momenta would be generated most during the gait phases known to generate leftward linear and angular momenta during straight line gait. We found distinct roles of gait phases towards generating momenta during turns that partially supported our hypotheses. Supporting one hypothesis, the change in transverse-plane angular momentum and average moment were greater during double support with the left foot in front vs. other gait phases. Also, the change in leftward linear momentum and average leftward force were greater during right single support vs. other gait phases during straight-line gait and late-cued turns. However, during pre-planned turns, the average leftward force was not significantly greater during right single support vs. other gait phases. Overall, transverse-plane angular momentum generation during turns is similar to its generation during straight-line gait, suggesting that healthy young adults can leverage momenta control strategies used during straight-line gait during turns.  more » « less
Award ID(s):
1944207
PAR ID:
10409153
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background:Mild cognitive impairment (MCI) can be an early sign of Alzheimer’s disease and other types of dementia detectable through gait analysis. Curve walking, which demands greater cognitive and motor skills, may be more sensitive in MCI detection than straight walking. However, few studies have compared gait performance in older adults with and without MCI in these conditions. Objective:To compare the capability of curve and straight walking tests for the detection of MCI among older adults. Methods:We employed a Kinect v.2 camera to record the gait of 55 older adults (30 healthy controls, 25 with MCI) during single-task straight and curve walking tests. We examined 50 gait markers and conducted statistical analyses to compare groups and conditions. The trail was approved with protocol No. IR.SEMUMS.REC.1398.237 by the ethics committee of Semnan University of Medical Sciences in Iran. Results:Older adults with MCI exhibited more compromised gait performance, particularly during curve walking. Curve walking outperformed straight walking in MCI detection, with several gait markers showing significant differences between healthy controls and MCI patients. These markers encompass average velocity, cadence, temporal markers (e.g., gait cycle subphase durations), spatial markers (e.g., foot position changes during gait subphases), and spatiotemporal markers (e.g., step and stride velocities). Conclusions:Our study suggests curve walking as a more informative and challenging test for MCI detection among older adults, facilitating early diagnosis using non-invasive, cost-effective tools like the Kinect v.2 camera, complementing cognitive assessments in early diagnosis, and tracking MCI progression to dementia. 
    more » « less
  2. Healthy aging is associated with reduced corticospinal drive to leg muscles during walking. Older adults also exhibit slower or reduced gait adaptation compared to young adults. The objective of this study was to determine age-related changes in the contribution of corticospinal drive to ankle muscles during walking adaptation. Electromyography (EMG) from the tibialis anterior (TA), soleus (SOL), medial, and lateral gastrocnemius (MGAS, LGAS) were recorded from 20 healthy young adults and 19 healthy older adults while they adapted walking on a split-belt treadmill. We quantified EMG-EMG coherence in the beta-gamma (15–45 Hz) and alpha-band (8–15 Hz) frequencies. Young adults demonstrated higher coherence in both the beta-gamma band coherence and alpha band coherence, although effect sizes were greater in the beta-gamma frequency. The results showed that slow leg TA-TA coherence in the beta-gamma band was the strongest predictor of early adaptation in double support time. In contrast, early adaptation in step length symmetry was predicted by age group alone. These findings suggest an important role of corticospinal drive in adapting interlimb timing during walking in both young and older adults. 
    more » « less
  3. This paper presents a data driven global linear model of steady state walking dynamics. Instantaneous whole body angular momentum is a physics informed aggregate quantity used as a marker for dynamic balance during locomotion. Gait dynamics are often modeled as hybrid and nonlinear. We propose using Koopman Operators to model the gait stability dynamics with a global, linear model. This is achieved by augmenting the whole body angular momentum state variables with learned observables, or basis functions, such that the dynamics look linear in the lifted dimension. Considering that the gait dynamics are periodic, a regularization term that encourages the state transition matrix to be orthonormal is added to the loss term when learning the observables. This forces a periodic model to be learned and prevents the likelihood of unstable poles. A low average MSE was obtained over 2 gait cycles for different population types, each with slightly differing gait dynamics. Furthermore, this linear representation enables the use of linear analysis tools that could have clinical implications for assessing the gait of different patient groups. 
    more » « less
  4. Epidemiological studies link increased fall risk to obesity in older adults, but the mechanism through which obesity increases falls and fall risks is unknown. This study investigates if obesity (Body Mass Index: BMI>30 kg/m2) influenced gait and standing postural characteristics of community dwelling older adults leading to increased risk of falls. One hundred healthy older adults (age 74.0±7.6 years, range of 56-90 years) living independently in a community participated in this study. Participants' history of falls over the previous two years was recorded, with emphasis on frequency and characteristics of falls. Participants with at least two falls in the prior year were classified as fallers. Each individual was assessed for postural stability during quiet stance and gait stability during 10 meters walking. Fall risk parameters of postural sway (COP area, velocity, path-length) were measured utilizing a standard forceplate coupled with an accelerometer affixed at the sternum. Additionally, parameters of gait stability (walking velocity, double support time, and double support time variability) were assessed utilizing an accelerometer affixed at the participant's sternum. Gait and postural stability analyses indicate that obese older adults who fell have significantly altered gait pattern (longer double support time and greater variability) exhibiting a loss of automaticity in walking and, postural instability as compared to their counterparts (i.e., higher sway area and path length, and higher sway velocity) further increasing the risk of a fall given a perturbation. Body weight/BMI is a risk factor for falls in older adults as measured by gait and postural stability parameters. 
    more » « less
  5. Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants’ fall risks are modified by dual-task walking conditions. Seven healthy young and seven healthy older adults were randomly assigned to normal walking and dual-task walking sessions with a slip perturbation. In the dual-task session, the participants walked and simultaneously counted backwards from a randomly provided number. The results indicate that the gait changes in dual-task walking have no destabilizing effect on gait and slip responses in healthy individuals. We also found that, during dual-tasking, healthy individuals adopted cautious gait mode (CGM) strategy that is characterized by reduced walking speed, shorter step length, increased step width, and reduced heel contact velocity and is likely to be an adaptation to minimize attentional demand and decrease slip and fall risk during limited available attentional resources. Exploring interactions between gait variability and cognitive functions while walking may lead to designing appropriate fall interventions among healthy and patient population with fall risk. 
    more » « less